(2014?宝坻区二模)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针
(2014?宝坻区二模)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结...
(2014?宝坻区二模)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中一定正确的是( )A.②④B.①③C.①④D.②③
展开
1个回答
展开全部
∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,
在△AED与△AEF中,
,
∴△AED≌△AEF(SAS),故①正确;
∵∠BAE与∠CAD的大小无法确定,
∴△ABE与△ACD是否相似无法确定,故②错误;
同理,DE与BE+DC的大小也无法确定,故③错误;
∵△AED≌△AEF,
∴ED=FE,∠ACB=∠ABF,
在Rt△ABC中,
∵∠ABC+∠ACB=90°,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴BE2+BF2=FE2,即BE2+DC2=DE2,故④正确.
故选C.
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,
在△AED与△AEF中,
|
∴△AED≌△AEF(SAS),故①正确;
∵∠BAE与∠CAD的大小无法确定,
∴△ABE与△ACD是否相似无法确定,故②错误;
同理,DE与BE+DC的大小也无法确定,故③错误;
∵△AED≌△AEF,
∴ED=FE,∠ACB=∠ABF,
在Rt△ABC中,
∵∠ABC+∠ACB=90°,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴BE2+BF2=FE2,即BE2+DC2=DE2,故④正确.
故选C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询