复合函数二阶偏导数公式是什么?
展开全部
公式为:y'=2x的导数为y''=2。
y=x²的导数为y'=2x,二阶导数即y'=2x的导数为y''=2。
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
二阶导数的相关规定性质:
1、设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;若在(a,b)内f''(x)<0,则f(x)在[a,b]上的图形是凸的。
2、结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询