已知{a n }为等比数列, a 3 =2 , a 2 + a 4 = 20 3 ,求{a n }的通项公式
已知{an}为等比数列,a3=2,a2+a4=203,求{an}的通项公式....
已知{a n }为等比数列, a 3 =2 , a 2 + a 4 = 20 3 ,求{a n }的通项公式.
展开
1个回答
展开全部
解:设等比数列{an}的公比为q(q≠0),所以an
=
a1qn-1
,a3
=
a1q2
=
2①,a2
+
a4
=
a1q
+
a1q3
=
20/3②,②/①可得(q
+
q3)/q2
=
10/3
=>
3(1
+
q2)
=
10q
=>
3q2
–
10q
+
3
=
0
=>
(3q
–
1)(q
–
3)
=
0
=>
q
=
1/3或者3,对应的a1
=
18或者2/9,所以{an}的通项公式an
=
18(1/3)n-1
或者an
=
(2/9)3n-1
。
=
a1qn-1
,a3
=
a1q2
=
2①,a2
+
a4
=
a1q
+
a1q3
=
20/3②,②/①可得(q
+
q3)/q2
=
10/3
=>
3(1
+
q2)
=
10q
=>
3q2
–
10q
+
3
=
0
=>
(3q
–
1)(q
–
3)
=
0
=>
q
=
1/3或者3,对应的a1
=
18或者2/9,所以{an}的通项公式an
=
18(1/3)n-1
或者an
=
(2/9)3n-1
。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询