已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)
展开全部
因为 2A(A-E) = A^3
所以 A^3 - 2A^2 + 2A = 0
所以 A^2(A-E) -A(A-E) +A-E = -E
即 (A^2-A+E)(E-A) = E
所以 E-A 可逆,且 (E-A)^-1 = A^2-A+E.
所以 A^3 - 2A^2 + 2A = 0
所以 A^2(A-E) -A(A-E) +A-E = -E
即 (A^2-A+E)(E-A) = E
所以 E-A 可逆,且 (E-A)^-1 = A^2-A+E.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |