数学问题,中值定理

 我来答
环贤东欢
2019-05-21 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:27%
帮助的人:667万
展开全部
勾股定理
勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”。
勾股定理(又称商高定理,毕达哥拉斯定理)是一个基本的几何定理,早在中国商代就由商高发现。据说毕达哥拉斯发现了这个定后,即斩了百头牛作庆祝,因此又称“百牛定理”。
勾股定理指出:
直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,
设直角三角形两直角边为a和b,斜边为c,那麽
a2
+
b2
=
c2
勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
勾股数组
满足勾股定理方程a2
+
b2
=
c2的正整数组(a,b,c)。例如(3,4,5)就是一组勾股数组。
由于方程中含有3个未知数,故勾股数组有无数多组。
推广
如果将直角三角形的斜边看作二维平面上的向量,将两斜边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。
冼凯复绪乐
2019-12-27 · TA获得超过3万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:857万
展开全部
令y=f(x)=lnx.则在[b,a],f满足中值定理的条件,
∴存在c∈(b,a),使得(lna-lnb)/(a-b)=f'(c)=1/c
即ln(a/b)=(a-b)/c,∵b
评论
0
0
加载更多
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式