从一的平方一直加到99^2是多少?
2个回答
展开全部
an
=n^2
=n(n+1)-n
=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)] -(1/2)[n(n+1)-(n-1)n]
Sn
=a1+a2+...+an
=(1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)[2(n+2)-3]
=(1/6)n(n+1)(2n+1)
1^2+2^2+...+99^2
=S99
=(1/6)(99)(100)(199)
=328350
=n^2
=n(n+1)-n
=(1/3)[n(n+1)(n+2)-(n-1)n(n+1)] -(1/2)[n(n+1)-(n-1)n]
Sn
=a1+a2+...+an
=(1/3)n(n+1)(n+2) -(1/2)n(n+1)
=(1/6)n(n+1)[2(n+2)-3]
=(1/6)n(n+1)(2n+1)
1^2+2^2+...+99^2
=S99
=(1/6)(99)(100)(199)
=328350
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询