埃及分数的拆分法

 我来答
萌伊515
2020-10-05 · TA获得超过267个赞
知道答主
回答量:198
采纳率:97%
帮助的人:49.8万
展开全部
当限定分母为奇数时,把“1”分解为埃及分数,项数限定为9项,共有5组解:

1=1/3+1/5+1/7+1/9+1/11+1/15+1/35+1/45+1/231。

1=1/3+1/5+1/7+1/9+1/11+1/15+1/21+1/135+1/10395。

1=1/3+1/5+1/7+1/9+1/11+1/15+1/21+1/165+1/693。

1=1/3+1/5+1/7+1/9+1/11+1/15+1/21+1/231+1/315。

1=1/3+1/5+1/7+1/9+1/11+1/15+1/33+1/45+1/385。

以上5组解是在1976年才找到。限定为11项时,发现了1组解 最小分母是105。若大于105则有很多的解。

1/n型分数还可以表示成为级数分解式:

1/n=1/(n+1)+1/(n+1)^2+1/(n+1)^3+1/(n+1)^4+....+1/(n+1)^k+1/n(n+1)^k.

埃及分数成为不定方程中一颗耀眼的明珠。

埃及分数最著名的猜想是Erods猜想:1950年Erods猜想,对于n〉1的正整数

总有:

4/n=1/x+1/y+1/z. (1)

其中,x,y,z。都是正整数。

Stralss进一步猜想,当n≥2时,方程的解x,y,z满足x≠y,y≠z,z≠x。x〈y〈z。

1963年柯召,孙奇,张先觉证明了Erods猜想stralss猜想等价。几年后yamanot又把结果发展到10的7次方。以后一些数学家又把结果推向前去,始终未获根本解决。对于4/n=1/x+1/y+1/z,只需要考虑n=p为素数的情况,因为若(1)式成立,则对于任何整数m,m<1,

4/pm=1/xm+1/ym+1/zm,(2)

也成立。

一切奇素数都可以表示为4R+1与4R+3型。对于p=4R+3型,(参见《单位分数》人民教育出版社1962年):(1)式是显然的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式