如果n阶矩阵A满足A2-A-4E=0,证矩阵A+E可逆,并求A+E的逆阵
1个回答
展开全部
设B = A+E,那么A = B-E
所以(B-E)^2-3(B-E)-7E=0,化简得到B^2-5B-3E=0
也就是B(B-5E) = 3E
所以A+E=B可逆,其逆矩阵是B^-1=(B-5E)/3 = (A-4E)/3
所以(B-E)^2-3(B-E)-7E=0,化简得到B^2-5B-3E=0
也就是B(B-5E) = 3E
所以A+E=B可逆,其逆矩阵是B^-1=(B-5E)/3 = (A-4E)/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询