已知如图在三角形ABC中,角A等于90度,BC的垂直平分线分别交BC.AB于点D.E?
1个回答
展开全部
连接CE.
因为ED垂直平分BC,因此CD = BD & 角CDE = 角BDE = 90度
因为CD = BD,角CDE = 角BDE = 90度,共用ED,因此三角形ADE ≅ 三角形BDE => CE = BE
Rt三角形AEC中,EC^2 = AC^2 + AE^2
因此, BE^2 = AC^2 + AE^2,2,已知如图在三角形ABC中,角A等于90度,BC的垂直平分线分别交BC.AB于点D.E
求证 BE^=AC^+AE^
因为ED垂直平分BC,因此CD = BD & 角CDE = 角BDE = 90度
因为CD = BD,角CDE = 角BDE = 90度,共用ED,因此三角形ADE ≅ 三角形BDE => CE = BE
Rt三角形AEC中,EC^2 = AC^2 + AE^2
因此, BE^2 = AC^2 + AE^2,2,已知如图在三角形ABC中,角A等于90度,BC的垂直平分线分别交BC.AB于点D.E
求证 BE^=AC^+AE^
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询