2001年全国初中数学联赛 试卷

已知点P在直角坐标系中的坐标为(0,1),O为坐标原点,∠QPO=150度,且P到Q的距离为2,求点Q的坐标... 已知点P在直角坐标系中的坐标为(0,1),O为坐标原点,∠QPO=150度,且P到Q的距离为2,求点Q的坐标 展开
 我来答
田野次郎Cq
2008-12-23
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
2001年全国初中数学联赛
一、选择题(每小题7分,共42分)
1、a,b,c为有理数,且等式 成立,则2a+999b+1001c的值是( )
(A) 1999(B)2000(C)2001(D)不能确定
2、若 ,且有5a2+2001a+9=0及 ,则 的值是( )
(A) (B) (C) (D)
3、已知在△ABC中,∠ACB=900,∠ABC=150,BC=1,则AC的长为( )
(A) (B) (C) (D)
4、如图,在△ABC中,D是边AC上的一点,下面四种情况中,△ABD∽△ACB不一定成立的情况是( )
(A) (B)
(C)∠ABD=∠ACB (D)
5、①在实数范围内,一元二次方程 的根为 ;②在△ABC中,若 ,则△ABC是锐角三角形;③在△ABC和 中,a,b,c分别为△ABC的三边, 分别为 的三边,若 ,则△ABC的面积S大于 的面积 。以上三个命题中,假命题的个数是( )
(A)0(B)1(C)2(D)3
6、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是( )
(A)522.8元(B)510.4元(C)560.4元(D)472.8

二、填空题(每小题7分,共28分)
1、已知点P在直角坐标系中的坐标为(0,1),O为坐标原点,∠QPO=1500,且P到Q的距离为2,则Q的坐标为 。
2、已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为 。
3、已知 是正整数,并且 ,则 = 。
4、一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为 。
三、 解答题(共70分)
1、在直角坐标系中有三点A(0,1),B(1,3),C(2,6);已知直线 上横坐标为0、1、2的点分别为D、E、F。试求 的值使得AD2+BE2+CF2达到最大值。(20分)
(1) 证明:若 取任意整数时,二次函数 总取整数值,那么 都是整数;
(2)写出上述命题的逆命题,并判断真假,且证明你的结论。(25分)
3、如图,D,E是△ABC边BC上的两点,F是BC延长线上的一点,∠DAE=∠CAF。(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆的半径的2倍,BC=6,AB=4,求BE的长。

解答题:
1、 如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH所夹的锐
角为θ,且∠BEG与∠CFH都是锐角。已知EG=k,FH= ,四边形EFGH的面积为S。
(1)求证:sinθ= ;
(2)试用 来表示正方形的面积。
2、 求所有的正整数a,b,c,使得关于x的方程 , ,
的所有的根都是正整数。
3、在锐角△ABC中,AD⊥BC,D为垂足,DE⊥AC,E为垂足,DF⊥AB,F为垂足。O为△ABC的外心。
求证:(1)△AEF∽△ABC;
(2)AO⊥EF
4、如图,在四边形ABCD中,AC与BD交于点O,直线 平行于BD,且与AB、DC、BC、AD及AC的延长线分别相交于点M、N、R、S和P。
求证:PM PN=PR PS

参考资料: http://www.xkb1.com/shuxue/chuzhongshuxuejingsai/20080408/35137.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
bcncs
2008-12-18
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
(-1,√3 +1) OR (1,√3 +1) 画个图就出来了,最后利用30度,60度,90度对应边的关系求坐标
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式