如何求矩阵的最小多项式

?... 展开
白雪忘冬
高粉答主

2019-05-26 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376626

向TA提问 私信TA
展开全部

最小多项式(minimal polynomial)是代数数论的基本概念之一。由Cayley-Hamilton定理,A的特征多项式是A的零化多项式,而在A的零化多项式中,次数最低的首一多项式称为A的最小多项式。

最小多项式的求解方法

方法:

1、先将A的特征多项式

在P中作标准分解,找到A的全部特征值

 2、对

的标准分解式中含有

的因式按次数从低到高的顺序进行检测,第一个能零化A的多项式就是最小多项式。

例:

 

的最小多项式。

解:A的特征多项式为:

 

故A的最小多项式为

扩展资料

特征多项式的解法

1、把|λE-A|的各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式。

2、把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式。

3、试根法分解因式。

电灯剑客
科技发烧友

2008-12-28 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4983万
展开全部
求极小多项式本质上和求初等因子组或者Jordan标准型是等价的。
如果这些概念知道,那么看一下教材就明白了。
如果都不知道,那么这样:
先求出所有的特征值及其代数重数。假定不同特征值为c1,c2...,ck,那么极小多项式一定是
p(x)=(x-c1)^a1(x-c2)^a2...(x-ck)^ak
的形式,关键在于定次数。
对于单特征值c,那么对应的指数就是a=1。
对于重特征值c,去求它的广义特征向量,也就是说解(cI-A)^mx=0,m从1开始向上增加,直到(cI-A)^mx=0线性无关的解的个数和特征值的重数相同,那么a=m。换句话说,就是使得(cI-A)^mx=0线性无关的解的个数和特征值的重数相同的最小的m。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式