2个回答
展开全部
最小多项式(minimal polynomial)是代数数论的基本概念之一。由Cayley-Hamilton定理,A的特征多项式是A的零化多项式,而在A的零化多项式中,次数最低的首一多项式称为A的最小多项式。
最小多项式的求解方法
方法:
1、先将A的特征多项式
在P中作标准分解,找到A的全部特征值
的因式按次数从低到高的顺序进行检测,第一个能零化A的多项式就是最小多项式。
例:
的最小多项式。
解:A的特征多项式为:
又
故A的最小多项式为
扩展资料
特征多项式的解法
1、把|λE-A|的各行(或各列)加起来,若相等,则把相等的部分提出来(一次因式)后,剩下的部分是二次多项式,肯定可以分解因式。
2、把|λE-A|的某一行(或某一列)中不含λ的两个元素之一化为零,往往会出现公因子,提出来,剩下的又是一二次多项式。
3、试根法分解因式。
展开全部
求极小多项式本质上和求初等因子组或者Jordan标准型是等价的。
如果这些概念知道,那么看一下教材就明白了。
如果都不知道,那么这样:
先求出所有的特征值及其代数重数。假定不同特征值为c1,c2...,ck,那么极小多项式一定是
p(x)=(x-c1)^a1(x-c2)^a2...(x-ck)^ak
的形式,关键在于定次数。
对于单特征值c,那么对应的指数就是a=1。
对于重特征值c,去求它的广义特征向量,也就是说解(cI-A)^mx=0,m从1开始向上增加,直到(cI-A)^mx=0线性无关的解的个数和特征值的重数相同,那么a=m。换句话说,就是使得(cI-A)^mx=0线性无关的解的个数和特征值的重数相同的最小的m。
如果这些概念知道,那么看一下教材就明白了。
如果都不知道,那么这样:
先求出所有的特征值及其代数重数。假定不同特征值为c1,c2...,ck,那么极小多项式一定是
p(x)=(x-c1)^a1(x-c2)^a2...(x-ck)^ak
的形式,关键在于定次数。
对于单特征值c,那么对应的指数就是a=1。
对于重特征值c,去求它的广义特征向量,也就是说解(cI-A)^mx=0,m从1开始向上增加,直到(cI-A)^mx=0线性无关的解的个数和特征值的重数相同,那么a=m。换句话说,就是使得(cI-A)^mx=0线性无关的解的个数和特征值的重数相同的最小的m。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询