
1个回答
展开全部
解析:因为f(x)=Asin(wx+φ)(A>0,w>0,0<φ<π)
由图知:A=2,T/2=π/3+π/6=π/2==>T=π==>w=2
所以,f(x)=2sin(2x+φ)==>f(π/12)=2sin(π/6+φ)=2==>φ=π/3
所以,f(x)=2sin(2x+π/3)
单调减区间:2kπ+π/2<=2x+π/3<=2kπ+3π/2==>kπ+π/12<=x<=kπ+7π/12
由图知:A=2,T/2=π/3+π/6=π/2==>T=π==>w=2
所以,f(x)=2sin(2x+φ)==>f(π/12)=2sin(π/6+φ)=2==>φ=π/3
所以,f(x)=2sin(2x+π/3)
单调减区间:2kπ+π/2<=2x+π/3<=2kπ+3π/2==>kπ+π/12<=x<=kπ+7π/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询