急呀!!已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是 5
已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2,若将f(x)的图象先向右平移π6个单位,再向上平移3个单位,所得函数g(...
已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2,若将f(x)的图象先向右平移π6个单位,再向上平移3个单位,所得函数g(x)为奇函数
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,π3],f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.
要详细 展开
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,π3],f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.
要详细 展开
展开全部
已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2,若将f(x)的图象先向右平移π6个单位,再向上平移3个单位,所得函数g(x)为奇函数
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,π3],f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.
(1)解析:∵函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π/2
∴T/2=π/2==>T=π==>ω=2==>f(x)=sin(2x+φ)-b,
∵将f(x)的图象先向右平移π/6 个单位,再向上平移3 个单位,所得函数g(x)为奇函数∴g(x)=sin(2(x-π/6)+φ)-b+3
令-π/3+φ=0==>φ =π/3,b=3
∴f(x)=sin(2x+π/3)-3
(2)解析:
单调增区间:2kπ-π/2<=2x+π/3<=2kπ+π/2==>kπ-5π/12<=x<=2kπ+π/12
单调减区间:2kπ+π/2<=2x+π/3<=2kπ+3π/2==>kπ+π/12<=x<=2kπ+7π/12
(3)解析:∵对任意x∈[0,π/3 ],f^2(x)-(2+m)f(x)+2+m≤0恒成立
当x∈[0,π/3 ]时,
f(0)=sin(π/3)-3=√3/2-3
f(π/12)=sin(π/6+π/3)-3=-2
f(π/3)=sin(2π/3+π/3)-3=-4
∴f(x)∈[-4,-2]
令t=f(x),g(t)=t^2-(2+m)t+2+m=t^2-2t+2+m(1-t) t∈[-4,-2]
∴函数g(t)无论m取何值必过定点(1,1)
∴要满足t∈[-4,-2]时,g(t)<=0
此时g(t)对称轴x=(2+m)/2<1,则m<0
∴只要g(-4)=16+4(2+m)+2+m<=0==>m<=-(1+3√3)/2
∴对任意x∈[0,π/3 ],f^2(x)-(2+m)f(x)+2+m≤0恒成立,只要m<=-26/5
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若对任意x∈[0,π3],f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.
(1)解析:∵函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π/2
∴T/2=π/2==>T=π==>ω=2==>f(x)=sin(2x+φ)-b,
∵将f(x)的图象先向右平移π/6 个单位,再向上平移3 个单位,所得函数g(x)为奇函数∴g(x)=sin(2(x-π/6)+φ)-b+3
令-π/3+φ=0==>φ =π/3,b=3
∴f(x)=sin(2x+π/3)-3
(2)解析:
单调增区间:2kπ-π/2<=2x+π/3<=2kπ+π/2==>kπ-5π/12<=x<=2kπ+π/12
单调减区间:2kπ+π/2<=2x+π/3<=2kπ+3π/2==>kπ+π/12<=x<=2kπ+7π/12
(3)解析:∵对任意x∈[0,π/3 ],f^2(x)-(2+m)f(x)+2+m≤0恒成立
当x∈[0,π/3 ]时,
f(0)=sin(π/3)-3=√3/2-3
f(π/12)=sin(π/6+π/3)-3=-2
f(π/3)=sin(2π/3+π/3)-3=-4
∴f(x)∈[-4,-2]
令t=f(x),g(t)=t^2-(2+m)t+2+m=t^2-2t+2+m(1-t) t∈[-4,-2]
∴函数g(t)无论m取何值必过定点(1,1)
∴要满足t∈[-4,-2]时,g(t)<=0
此时g(t)对称轴x=(2+m)/2<1,则m<0
∴只要g(-4)=16+4(2+m)+2+m<=0==>m<=-(1+3√3)/2
∴对任意x∈[0,π/3 ],f^2(x)-(2+m)f(x)+2+m≤0恒成立,只要m<=-26/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1)∵g(x)为奇函数
∴g(x)=sin(ωx)
ω=π/2*2/(2π)=1/2
∴g(x)=sin(1/2x)
f(x)=sin[1/2(x+π/6)]-3=sin(1/2x+π/12)-3
2)2kπ-π/2<1/2x+π/12<2kπ+π/2
4kπ-7π/6<x<4kπ+5π/6
单增区间:(4kπ-7π/6,4kπ+5π/6) (k∈Z)
单减区间:(4kπ+5π/6,4kπ+17π/6) (k∈Z)
∴g(x)=sin(ωx)
ω=π/2*2/(2π)=1/2
∴g(x)=sin(1/2x)
f(x)=sin[1/2(x+π/6)]-3=sin(1/2x+π/12)-3
2)2kπ-π/2<1/2x+π/12<2kπ+π/2
4kπ-7π/6<x<4kπ+5π/6
单增区间:(4kπ-7π/6,4kπ+5π/6) (k∈Z)
单减区间:(4kπ+5π/6,4kπ+17π/6) (k∈Z)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询