已知定点A(0,2)及圆O:x^2+y^2=4,过A作MA切圆O于A,M为切线上的一个动点,MQ切圆O于Q点

求三角形MAQ的垂心H的轨迹方程。急!过程尽量清楚一点!谢谢!... 求三角形MAQ的垂心H的轨迹方程。
急!过程尽量清楚一点!谢谢!
展开
cilley311
2014-07-23 · TA获得超过1.9万个赞
知道大有可为答主
回答量:4169
采纳率:60%
帮助的人:1827万
展开全部

解: x^2+y^2=4与y轴正半轴的交点A:把x=0代入得出,y=±2(其中-2舍去)A点坐标是(0,2)

l切线为通过A点的切线:y=2

M为l上任意一点,再M过作圆的另一切线,切点为Q,连接△MAQ.

∵AM=MQ(圆外一点到两边的切线相等)

∴△MAQ为等腰△,

∴垂心N在弦AQ的垂直平分线上,也就是在圆心和中点P的连线(AP)延长线上.

同时垂心又一定通过△MAQ的Q点的平行y轴的直线上.

两条直线交点即为垂心N点.再连接AN.

作图如图所示.

在Rt△ANP和Rt△QNP中,AP=PQ(P为弦的中点),PN=PN(公共边)

∴Rt△ANP≌Rt△QNP ∴AN=NQ 

同理可证:Rt△ANP≌Rt△QNP≌Rt△AOP≌Rt△QOP

∴AN=NP=AO=QO=圆O的半径r=2

垂心N的轨迹方程是:

x^2+(y-2)^2=4

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式