已知函数f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a(a∈R,a为常数)
1、求f(x)的最小正周期2、求单调递增区间3、若x∈[0,π/2],f(x)的最小值是-2,求a的值...
1、求f(x)的最小正周期
2、求单调递增区间
3、若x∈[0,π/2],f(x)的最小值是-2,求a的值 展开
2、求单调递增区间
3、若x∈[0,π/2],f(x)的最小值是-2,求a的值 展开
展开全部
1.
f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a
=√3/2sin2x+1/2cos2x+√3/2sin2x-1/2cos2x+cos2x+a
=√3sin2x+cos2x+a
=2sin(2x+π/6)+a
所以f(x)的最小正周期2π/2=π
2.
sinx的单调递增区间[2kπ-π/2,2kπ+π/2]
所以2kπ-π/2<=2x+π/6<=2kπ+π/2
解得kπ-π/3<=x<=kπ+π/6
单调递增区间[kπ-π/3,kπ+π/6] k是整数
3.
x∈[0,π/2] 2x+π/6∈[π/6,7π/6]
sin(2x+π/6)的最小值是sin(7π/6)=-1/2
所以2*(-1/2)+a=-2 a=-1
f(x)=sin(2x+π/6)+sin(2x-π/6)+cos2x+a
=√3/2sin2x+1/2cos2x+√3/2sin2x-1/2cos2x+cos2x+a
=√3sin2x+cos2x+a
=2sin(2x+π/6)+a
所以f(x)的最小正周期2π/2=π
2.
sinx的单调递增区间[2kπ-π/2,2kπ+π/2]
所以2kπ-π/2<=2x+π/6<=2kπ+π/2
解得kπ-π/3<=x<=kπ+π/6
单调递增区间[kπ-π/3,kπ+π/6] k是整数
3.
x∈[0,π/2] 2x+π/6∈[π/6,7π/6]
sin(2x+π/6)的最小值是sin(7π/6)=-1/2
所以2*(-1/2)+a=-2 a=-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询