求齐次方程dy/dx=-(4x+3y)/(x+y)的通解
1个回答
展开全部
∵dy/dx=-(4x+3y)/(x+y)=-(4+3y/x)/(1+y/x),
∴可令y/x=u,则:y=ux,∴dy/dx=u+xdu/dx,
∴u+xdu/dx=-(4+3u)/(1+u),
∴xdu/dx=-(5+4u)/(1+u),
∴[(1+u)/(5+4u)]du=-(1/x)dx,
∴∫[(1+u)/(5+4u)]du=-∫(1/x)dx,
∴∫[(5+4u-1)/(5+4u)]du=-4∫d(ln|x|),
∴∫[1-1/(5+4u)]du=-4ln|x|+C,
∴u-(1/4)ln|5+4u|=-4ln|x|+C,
∴y/x-(1/4)ln|5+4y/x|=-4ln|x|+C。
∴原微分方程的通解是:y/x-(1/4)ln|5+4y/x|=-4ln|x|+C。
∴可令y/x=u,则:y=ux,∴dy/dx=u+xdu/dx,
∴u+xdu/dx=-(4+3u)/(1+u),
∴xdu/dx=-(5+4u)/(1+u),
∴[(1+u)/(5+4u)]du=-(1/x)dx,
∴∫[(1+u)/(5+4u)]du=-∫(1/x)dx,
∴∫[(5+4u-1)/(5+4u)]du=-4∫d(ln|x|),
∴∫[1-1/(5+4u)]du=-4ln|x|+C,
∴u-(1/4)ln|5+4u|=-4ln|x|+C,
∴y/x-(1/4)ln|5+4y/x|=-4ln|x|+C。
∴原微分方程的通解是:y/x-(1/4)ln|5+4y/x|=-4ln|x|+C。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |