关于三角形的问题
1个回答
展开全部
一、直角三角形(right
triangle)。
1)直角三角形的定义:有一个角为90°的三角形,叫做直角三角形。
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质。
2)直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,30度角所对的直角边是斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;
(5)在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2
(勾股定理);
(6)直角三角形斜边上的高h等于该直角三角形外接圆半径斜边上的中线等于该直角三角形内切圆半径.
3)直角三角形的判定:
(1)有一个角为90°的三角形是直角三角形;
(2)一个三角形,如果这个三角形一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形;
(3)若a^2+b^2=c^2,则以a、b、c为边的三角形是以c为斜边直角三角形(勾股定理的逆定理);
(4)若三角形30°内角所对的边是某一边的一半
,那么这个三角形是以这条长边为斜边的直角三角形;
(5)两个锐角互余的三角形是直角三角形.
二、等腰三角形(isosceles
triangle)
1)等腰三角形的定义:
有两边相等的三角形是等腰三角形
2)等腰三角形的性质:
1.等腰三角形的两个底角相等。
(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)
7等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴
3).等腰三角形的判定:
有两条边相等的三角形是等腰三角形
有两个角相等的三角形是等腰三角形(简称:等角对等边)
三、等边三角形(equilateral
triangle)
等边三角形也称正三角形。
1)等边三角形的定义:
有三边都相等的三角形是等边三角形。等边三角形是特殊的等腰三角形。
2)等边三角形的性质:(具有等腰三角形的所有性质,结合定义更特殊)
1等边三角形的内角都相等,且为60度
2等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
3等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线
3)等边三角形的判定:(首先考虑判断三角形是等腰三角形)
(1)三边相等的三角形是等边三角形(定义)
(2)三个内角都相等的三角形是等边三角形
triangle)。
1)直角三角形的定义:有一个角为90°的三角形,叫做直角三角形。
直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质。
2)直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,30度角所对的直角边是斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;
(5)在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2
(勾股定理);
(6)直角三角形斜边上的高h等于该直角三角形外接圆半径斜边上的中线等于该直角三角形内切圆半径.
3)直角三角形的判定:
(1)有一个角为90°的三角形是直角三角形;
(2)一个三角形,如果这个三角形一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形;
(3)若a^2+b^2=c^2,则以a、b、c为边的三角形是以c为斜边直角三角形(勾股定理的逆定理);
(4)若三角形30°内角所对的边是某一边的一半
,那么这个三角形是以这条长边为斜边的直角三角形;
(5)两个锐角互余的三角形是直角三角形.
二、等腰三角形(isosceles
triangle)
1)等腰三角形的定义:
有两边相等的三角形是等腰三角形
2)等腰三角形的性质:
1.等腰三角形的两个底角相等。
(简写成“等边对等角”)
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“三线合一”)
3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等)
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半
6等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)
7等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴
3).等腰三角形的判定:
有两条边相等的三角形是等腰三角形
有两个角相等的三角形是等腰三角形(简称:等角对等边)
三、等边三角形(equilateral
triangle)
等边三角形也称正三角形。
1)等边三角形的定义:
有三边都相等的三角形是等边三角形。等边三角形是特殊的等腰三角形。
2)等边三角形的性质:(具有等腰三角形的所有性质,结合定义更特殊)
1等边三角形的内角都相等,且为60度
2等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
3等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或所对角的平分线所在直线
3)等边三角形的判定:(首先考虑判断三角形是等腰三角形)
(1)三边相等的三角形是等边三角形(定义)
(2)三个内角都相等的三角形是等边三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询