这个数学题怎么做?
7个回答
展开全部
根据“如果一个数等于几个数的和,那么这个数被a除的余数,等于各个加数被a除的余数的和再被a除的余数”。得到数列各项被6除,余数组成的数列是:
1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,……。
观察规律,发现到第25项以后又重复出现前24项。呈现周期性变化规律。一个周期内排有24个数。(余数数列的前24项)
1993÷24=83……1。
第1993个数是第84个周期的第1个数。因此被6除是余1。
1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,……。
观察规律,发现到第25项以后又重复出现前24项。呈现周期性变化规律。一个周期内排有24个数。(余数数列的前24项)
1993÷24=83……1。
第1993个数是第84个周期的第1个数。因此被6除是余1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
很简单,第一问用Sn-S(n-1),就出来了!第二问Tn*2后减去Tn,利用交叉相减法,消去中间项,结果应该是二项且相减的!
这个题在数列项的题目中算简单的,需要努力哟!
这个题在数列项的题目中算简单的,需要努力哟!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |