证明奇数级反对称阵的行列式为0

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8930万
展开全部

证明:根据反对称矩阵的性质有:

AT=-A

|A|=|AT|=|-A|=(-1)n|A|=-|A|

由于n为奇数

所以|A|=0

设A为n维方阵,若有A'=-A,则称矩阵A为反对称矩阵。对于反对称矩阵,它的主对角线上的元素全为零,而位于主对角线两侧对称的元反号。

扩展资料:

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

反对称矩阵具有很多良好的性质,如若A为反对称矩阵,则A',λA均为反对称矩阵;若A,B均为反对称矩阵,则A±B也为反对称矩阵;设A为反对称矩阵,B为对称矩阵,则AB-BA为对称矩阵;奇数阶反对称矩阵的行列式必为0。

参考资料来源:百度百科——反对称矩阵

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
广东尚尧律师事务所
2018-06-11 广告
《刑事诉讼法》:第七十九条 对有证据证明有犯罪事实,可能判处徒刑以上刑罚的犯罪嫌疑人、被告人,采取取保候审尚不足以防止发生下列社会危险性的,应当予以逮捕: (一)可能实施新的犯罪的; (二)有危害国家安全、公共安全或者社会秩序的现实危险的;... 点击进入详情页
本回答由广东尚尧律师事务所提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式