x/(y+z)+y/(x+z)+z/(x+y)=1求证x^2/(y+z)+y^2/(x+z)+z^2/(x+y)=0
1个回答
展开全部
设a=x/(y+z),b=y/(x+z),c=z/(x+y)
则题目说明a+b+c=1。
又显然1/(a+1)+1/(b+1)+1/(c+1)=2(显然x+y+z不为0,否则a=b=c=-1,矛盾)
所以
欲证式左边=ax+by+cz=a*(x+y+z)a/(a+1)+b*(x+y+z)b/(b+1)+c*(x+y+z)c/(c+1)=(a^2/(a+1)+b^2/(b+1)+c^2/(c+1))(x+y+z)=(a+b+c-3+1/(a+1)+1/(b+1)+1/(c+1))(x+y+z)=(1-3+2)(x+y+z)=0
不过,最本质的方法是利用恒等式
(x/(y+z)+y/(x+z)+z/(x+y))(x+y+z)=x^2/(y+z)+y^2/(x+z)+z^2/(x+y)+x+y+z
则题目说明a+b+c=1。
又显然1/(a+1)+1/(b+1)+1/(c+1)=2(显然x+y+z不为0,否则a=b=c=-1,矛盾)
所以
欲证式左边=ax+by+cz=a*(x+y+z)a/(a+1)+b*(x+y+z)b/(b+1)+c*(x+y+z)c/(c+1)=(a^2/(a+1)+b^2/(b+1)+c^2/(c+1))(x+y+z)=(a+b+c-3+1/(a+1)+1/(b+1)+1/(c+1))(x+y+z)=(1-3+2)(x+y+z)=0
不过,最本质的方法是利用恒等式
(x/(y+z)+y/(x+z)+z/(x+y))(x+y+z)=x^2/(y+z)+y^2/(x+z)+z^2/(x+y)+x+y+z
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询