已知梯形ABCD,AD//BC,AB垂直于BC,AD=1,AB=2,BC=3.

已知梯形ABCD,AD//BC,AB垂直于BC,AD=1,AB=2,BC=3.问题1、如图13-1所示,P为AB边上任意一点,以PD、PC为边作平行四边形PCQD,请问对... 已知梯形ABCD,AD//BC,AB垂直于BC,AD=1,AB=2,BC=3.
问题1、如图 13-1所示,P为AB边上任意一点,以PD、PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?
问题2/请问对角线PQ的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由;
问题3 P为AB边上任意一点,延长PD到E,是DE=PD,以PE、PC为边做平行四边形PCQE,请探究对角线PQ的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由;
问题4、如图13-3,P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边做平行四边形PBQE,请探究对角线PQ的长是否存在最小值?如果存在,请直接写出最小值;如果不存在,请说明理由;
展开
最坏不过明天
2014-04-06 · TA获得超过509个赞
知道答主
回答量:5
采纳率:0%
帮助的人:2.9万
展开全部
解:问题1:过点D作DE⊥BC于点E,
∵梯形ABCD,AD∥BC,AB⊥BC
∴四边形ABED是矩形,
∴DE=AB=2,BE=AD=1,
∴CE=BC-BE=2,
∴DC=2
2

∵四边形PCQD是平行四边形,
若对角线PQ、DC相等,则四边形PCQD是矩形,
设PB=x,则AP=2-x,
在Rt△DPC中,PD2+PC2=DC2,即x2+32+(2-x)2+1=8,
化简得x2-2x+3=0,
∵△=(-2)2-4×1×3=-8<0,
∴方程无解,
∴对角线PQ与DC不可能相等.
问题2:如图2,在平行四边形PCQD中,设对角线PQ与DC相交于点G,
则G是DC的中点,
过点Q作QH⊥BC,交BC的延长线于H,
∵AD∥BC,
∴∠ADC=∠DCH,即∠ADP+∠PDG=∠DCQ+∠QCH,
∵PD∥CQ,
∴∠PDC=∠DCQ,
∴∠ADP=∠QCH,
又∵PD=CQ,
∴Rt△ADP≌Rt△HCQ,
∴AD=HC,
∵AD=1,BC=3,
∴BH=4,
∴当PQ⊥AB时,PQ的长最小,即为4.
问题3:如图2′,设PQ与DC相交于点G,
∵PE∥CQ,PD=DE,
∴DG/GC=PD/CQ=1/2,
∴G是DC上一定点,
作QH⊥BC,交BC的延长线于H,
同理可证∠ADP=∠QCH,
∴Rt△ADP∽Rt△HCQ,
即AD/CH=PD/CQ=1/2,
∴CH=2,
∴BH=BC+CH=3+2=5,
∴当PQ⊥AB时,PQ的长最小,即为5.
问题4:如图3,设PQ与AB相交于点G,
∵PE∥BQ,AE=nPA,
∴PA/BQ=AG/BG=1/n+1,
∴G是AB上一定点,
作QH∥CD,交CB的延长线于H,过点C作CK⊥CD,交QH的延长线于K,
∵AD∥BC,AB⊥BC,
∴∠D=∠QHC,∠DAP+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,
∴∠QBH=∠PAD,
∴△ADP∽△BHQ,
∴AD/BH=PA/BQ=1/n+1,
∵AD=1,
∴BH=n+1,
∴CH=BH+BC=3+n+1=n+4,
过点D作DM⊥BC于M,
则四边形ABMD是矩形,
∴BM=AD=1,DM=AB=2
∴CM=BC-BM=3-1=2=DM,
∴∠DCM=45°,
∴∠KCH=45°,
∴CK=CH•cos45°=根号2乘(n+4)除2
∴当PQ⊥CD时,PQ的长最小,最小值为根号2乘(n+4)除2
好累,给个好评吧~亲
创远信科
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创... 点击进入详情页
本回答由创远信科提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式