如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PC上,PM=13P...
如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)点M在线段PC上,PM=13PC,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.
展开
展开全部
(1)证明:由题意知:PQ⊥AD,BQ⊥AD,PQ∩BQ=Q,
∴AD⊥平面PQB,
又∵AD?平面PAD,
∴平面PQB⊥平面PAD.
(2)∵PA=PD=AD,Q为AD的中点,
∴PQ⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD,
以Q这坐标原点,分别以QA,QB,QP为x,y,z轴,
建立如图所求的空间直角坐标系,
由题意知:Q(0,0,0),A(1,0,0),
P(0,0,
),B(0,
,0),C(-2,
,0)
∴
=
+
=(-
,
,
∴AD⊥平面PQB,
又∵AD?平面PAD,
∴平面PQB⊥平面PAD.
(2)∵PA=PD=AD,Q为AD的中点,
∴PQ⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD,
以Q这坐标原点,分别以QA,QB,QP为x,y,z轴,
建立如图所求的空间直角坐标系,
由题意知:Q(0,0,0),A(1,0,0),
P(0,0,
3 |
3 |
3 |
∴
QM |
2 |
3 |
QP |
1 |
3 |
QC |
2 |
3 |
| ||
3 |
2
|