如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C′处,折痕EF与BD交于点O,已知AB=16,AD=12,求折

如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C′处,折痕EF与BD交于点O,已知AB=16,AD=12,求折痕EF的长.... 如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C′处,折痕EF与BD交于点O,已知AB=16,AD=12,求折痕EF的长. 展开
 我来答
清静又清脆灬高山0
推荐于2016-04-21 · 超过72用户采纳过TA的回答
知道答主
回答量:134
采纳率:66%
帮助的人:69.6万
展开全部
解答:解:连接BE,
由折叠可知,EF垂直平分BD,又AB∥CD,
∴△BOF≌△DOE,
∴OF=OE,
∴四边形BEDF为菱形(对角线互相垂直平分的四边形是菱形),
设DF=FB=x,则AF=16-x,
在Rt△ABD中,由勾股定理得:BD=
AD2+AB2
=20,
在Rt△ADF中,由勾股定理得:AD2+AF2=DF2
即122+(16-x)2=x2
解得x=
25
2

根据菱形计算面积的公式,得
BF×AD=
1
2
×EF×BD,
25
2
×12=
1
2
×EF×20,
解得EF=15cm.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式