多出点初二下学期因式分解的题目容易点 15

 我来答
rongjun0212
2009-02-25 · 超过21用户采纳过TA的回答
知道答主
回答量:38
采纳率:0%
帮助的人:57.7万
展开全部
1.a^2-8a+16
2.x^3y-18xy^3
一、填空题
1、因式分解: 9x2-1=_________________, 4x2-4x+1=_________________.
a4-b4=_________________, an+2-an=____________________
2、多项式x2+mx+36是一个完全平方式,则m=_____________.
3、多项式x2+ax+b可以因式分解成(x-1)(x+3)则a=_______, b=______.
4、如果x=3时,多项式x3-4x2-9x+m的值为0,则m=_________,多项式因式分解的结果为_______________________.

二、选择题
1、下列从左到右的变形,属于因式分解的是……………………………………( )
(A)(a+3)(a-3)=a2-9 (B)4a2+4a+3=(2a+1)2+2
(C)x2-1=(x+1)(x-1) (D)-2m(m2-3m+1)=-2m3+6m2-2m
2、下列各式,能用完全平方因式分解的多项式的个数为………………………( )
①-a2-b2+2ab ②a2-ab+b2 ③a2-a+14 ④4a2+4a-1
(A)1个 (B)2个 (C)3个 (D)4个
3、用因式分解多项式3xy+6y2-x-2y时,分解正确的个数………………… ( )
①3xy+6y2-x-2y =(3xy-x)+(6y2-2y)
②3xy+6y2-x-2y=(3xy+6y2)-(x+2y)
③3xy+6y2-x-2y=(3xy-2y)+(6y2-x)
(A)0个 (B)1个 (C)2个 (D)3个

三、选择题
)1.下列多项式中何者含有2x+3的因式 (1)2x3+3 (2)4x2-9 (3)6x2-11x+3 (4)2x2+x+3
( )2.下列何者是2x2-11x-21的因式? (1)(x-6) (2)(x+7) (3)(2x-3) (4)(2x+3)
( )3.下列何者为甲×丙+乙×丙的因式 (1)甲+乙×丙 (2)甲+乙 (3)甲+丙 (4)丙+乙。
( )4.下列各式中,何者不是x2-4的因式? (1)x+2 (2)x-2 (3)x2-4 (4)x2。
( )5.a2-b2的因式不可能是下列那一个? (1)a2+b2 (2)a+b (3)a-b (4)a2-b2。
( )6.下列何者错误? (1)(-a+b)2=a2-2ab+b2 (2)(a-b)(a+b)=a2-b2 (3)(a-b)2=a2-2ab-b2 (4)(4+3)2=42+8×3+32。
( )7.下列各式中,何者是2x2-11x-21的因式? (1)2x-3 (2)x+7 (3)x-7 (4)2x+7。
( )8.下列何者为2x2+3x+1与4x2-4x-3的公因式? (1)x+1 (2)x+2 (3)2x-3 (4)2x+1。
( )9.因式分解(a+2)2-3(a+2)= (1)(a+2)(a-3) (2)(a+2)(a+3) (3)(a+2)(a+1) (4)(a+2)(a-1)。
( )10.下列何者正确? (1)a2-b2=(a-b)2 (2)a2-2ab+b2=(a+b)(a-b) (3)a2+2ab+b2=(a+b)2 (4)a2+b2=(a+b)(a-b)。
( )11.因式分解9x2-1= (1)(9x+1)(9x-1) (2)(3x-1)2 (3)(3x+1)(3x-1) (4)(9x-1)2。
( )12.若5x2-7x-6=(5x+a)(x+b),则 (1)a=-3 (2)b=-2 (3)ab=6 (4)a+b=5。
( )13.x2+mx+n=(x+a)(x+b),若m<0,n>0,则 (1)a>0,b>0 (2)a<0,b<0 (3)a>0,b<0 (4)a<0,b>0。
( )14.找出下列何者是15x2+x-2的因式? (1)5x-2 (2)15x+2 (3)3x-1 (4)3x+1。
( )15.下列何者是(x-4)(x-5)-42的因式? (1)x-2 (2)x+11 (3)x-11 (4)x+3。
( )16.若6x2-25x+4=(ax+b)(cx+d)则下列何者正确? (1)abcd=25 (2)a+b+c+d=24 (3)若a=1,则必cd=6 (4)若a=1,则必d=-1。
( )17.4a2-1等於下列何式? (1)(4a-1)2 (2)(2a-1)2 (3)(4a+1)(4a-1) (4)(2a+1)(2a-1)。
( )18.x2+y2等於 (1)(x+y)2 (2)(x+y)2+2xy (3)(x-y)2+2xy (4)(x-y)2-2xy。
( )19.你能利用2片边长xcm的正方形,9片长宽各为x,1cm的长方形和4片边长1cm的正方形,拼出长为(x+4)cm的长方形,其宽为 (1)(2x+1)cm (2)(x+3)cm (3)(2x+4)cm (4)(2x+2)cm。
( )20.下列何式是2x2+3x+1与4x2-4x-3的因式? (1)2x-1 (2)2x+1
(3)2x-3 (4)x+1。
( )21.下列那一个式子不是9x2-25的因式? (1)3x+5 (2)3x-5 (3)9x+5 (4)9x2-25。
( )22.因式分解x2-3x+2=(x+a)(a+b)则 (1)a+b=3 (2)a>0,b<0
(3)ab=-2 (4)a>0,b>0。
( )23.下列各二次式,何者有因式x-1? (1)x2+5x+6 (2)x2-5x-6 (3)x2+5x-6 (4)x2-5x+6。
( )24.(-x+y)2等於 (1)-(x-y)2 (2)(x-y)2 (3)(x+y)2 (4)(-x-y)2。
( )25.若x+y=-5,x-y=15 ,则x2-y2= (1)-5 (2)-1 (3)-15 (4)1。
( )26.x2+px+q=(x+a)(x+b),若a<0,b<0,则 (1)p>0 (2)q<0 (3)pq>0 (4)q>0。
( )27.若(x-5)2-(x-5)-12可分解为(x+a)(x+b),则a+b等於 (1)-11 (2)9 (3)11 (4)-9。
( )28.ax-cx-by+cy+bx-ay可分解为下列何式? (1)(x-y)(a-b-c)
(2)(x+y)(a+b-c) (3)(x-y)(a-b+c) (4)(x-y)(a+b-c)。
( )29.下列何者正确? (1)x2+2ax+x=x(x+2a) (2)2x2-8=x2-4=(x-2)(x+2) (3)36x2-84x+49=(7-6x)2 (4)x2-6=(x-2)(x+3)。

四、填充题
1.若2x3+3x2+mx+1为x+1的倍式,则m=
2.因式分解3a3b2c-6a2b2c2+9ab2c3=
3.因式分解xy+6-2x-3y=
4.因式分解x2(x-y)+y2(y-x)=
5.因式分解2x2-(a-2b)x-ab=
6.因式分解a4-9a2b2=
7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=
8.因式分解ab(x2-y2)+xy(a2-b2)=
9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=
10.因式分解a2-a-b2-b=
11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=
12.因式分解(a+3)2-6(a+3)=
13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=
14.若2×4×(32+1)×(34+1)×(38+1)×(316+1)=3n-1,求n= 。
15.利用平方差公式,求标准分解式4891= 。
16.2x+1是不是4x2+5x-1的因式?答: 。
17.若6x2-7x+m是2x-3的倍式,则m=
18.x2+2x+1与x2-1的公因式为 。
19.若x+2是x2+kx-8的因式,求k= 。
20.若4x2+8x+3是2x+1的倍式请因式分解4x2+8x+3= 。
21.2x+1是4x2+8x+3的因式,请因式分解4x2+8x+3= 。
22.(1)x+2 (2)x+4 (3)x+6 (4)x-6 (5)x2+2x3+24 上列何者x2-2x-24的因式 (全对才给分)
23.因式分解下列各式:
(1)abc+ab-4a= 。
(2)16x2-81= 。
(3)9x2-30x+25= 。
(4)x2-7x-30= 。
24.若x2+ax-12=(x+b)(x-2),其中a、b均为整数,则ab= 。
25.请将适当的数填入空格中:x2-16x+ =(x- )2。
26.因式分解下列各式:
(1)xy-xz+x= ;(2)6(x+1)-y(x+1)=
(3)x2-5x-px+5p= ;(4)15x2-11x-14=
27.设7x2-19x-6=(7x+a)(bx-3),且a,b为整数,则2a+b=
28.利用乘法公式展开99982-4= 。
29.计算(1.99)2-4×1.99+4之值为 。
30.若x2+ax-12可分解为(x+6)(x+b),且a,b为整数,则a+b= 。
31.已知9x2-mx+25=(3x-n)2,且n为正整数,则m+n= 。
32.若2x3+11x2+18x+9=(x+1)(ax+3)(x+b),则a-b= 。
33.2992-3992=
34.填入适当的数使其能成为完全平方式4x2-20x+ 。
35.因式分解x2-25= 。
36.因式分解x2-20x+100= 。
37.因式分解x2+4x+3= 。
38.因式分解4x2-12x+5= 。
39.因式分解下列各式:
(1)3ax2-6ax= 。
(2)x(x+2)-x= 。
(3)x2-4x-ax+4a= 。
(4)25x2-49= 。
(5)36x2-60x+25= 。
(6)4x2+12x+9= 。
(7)x2-9x+18= 。
(8)2x2-5x-3= 。
(9)12x2-50x+8= 。
40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。
41.因式分解2ax2-3x+2ax-3= 。
42.因式分解9x2-66x+121= 。
43.因式分解8-2x2= 。
44.因式分解x2-x+14 = 。
45.因式分解9x2-30x+25= 。
46.因式分解-20x2+9x+20= 。
47.因式分解12x2-29x+15= 。
48.因式分解36x2+39x+9= 。
49.因式分解21x2-31x-22= 。
50.因式分解9x4-35x2-4= 。
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。
52.因式分解2ax2-3x+2ax-3= 。
53.因式分解x(y+2)-x-y-1= 。
54.因式分解(x2-3x)+(x-3)2= 。
55.因式分解9x2-66x+121= 。
56.因式分解8-2x2= 。
57.因式分解x4-1= 。
58.因式分解x2+4x-xy-2y+4= 。
59.因式分解4x2-12x+5= 。
60.因式分解21x2-31x-22= 。
61.因式分解4x2+4xy+y2-4x-2y-3= 。
62.因式分解9x5-35x3-4x= 。
63.因式分解下列各式:
(1)3x2-6x= 。
(2)49x2-25= 。
(3)6x2-13x+5= 。
(4)x2+2-3x= 。
(5)12x2-23x-24= 。
(6)(x+6)(x-6)-(x-6)= 。
(7)3(x+2)(x-5)-(x+2)(x-3)= 。
(8)9x2+42x+49= 。
64.9x2-30x+k可化为完全平方式(3x+a)2,则k= a= 。
65.若x2+mx-15可分解为(x+n)(x-3),m、n皆为整数,则m= n= 。
66.求下列各式的和或差或积或商。
(1)(6512 )2-(3412 )2= 。
(2)(7913 )2+2×7913 ×23 +49 = 。
(3)1998×0.48-798×0.48-798×0.52+1998×0.52= 。
67.因式分解下列各式:
(1)(x+2)-2(x+2)2= 。
(2)36x2+39x+9= 。
(3)2x2+ax-6x-3a= 。
(4)22x2-31x-21= 。
68.利用平方差,和的平方或差的平方公式,填填看
(1)49x2-1=( +1)( -1)
(2)x2+26x+ =(x+ )2
(3)x2-20x+ =(x- )2
(4)25x2-49y2=(5x+ )(5x- )
(5) -66x+121=( -11)2
69.利用公式求下列各式的值
(1)求5992-4992= (2)求(7512 )2-(2412 )2=
(3)求392+39×22+112= (4)求172-34×5+52=
(5)若2x+5y=13 +7 ,x-4y=7 -13 求2x2-3xy-20y2=
70.因式分解3ax2-6ax= 。
71.因式分解(x+1)x-5x= 。
72.因式分解(2x+1)(x-3)-(2x+1)(x-5)=
73.因式分解xy+2x-5y-10=
74.因式分解x2y2-x2-y2-6xy+4= 。

五、计算题
1.因式分解x3+2x2+2x+1
2.因式分解a2b2-a2-b2+1
3.试用除法判别15x2+x-6是不是3x+2的倍式。
4.(1)判别3x+2是不是6x2+x-2的因式?(写出计算式)
(2)如果是,请因式分解6x2+x-2。
5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值?
6.判别2x+1是否4x2+8x+3的因式?如果是,请因式分解4x2+8x+3。
7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。
8.设6x2-13x+k为3x-2的倍式,求k之值。
9.判别3x是不是x2之因式?(要说明理由)
10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)将-2x2+ax-12因式分解。
11.(1)因式分解ab-cd+ad-bc
(2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。
12.利用平方差公式求1992-992=?
13.利用乘法公式求(6712 )2-(3212 )2=?
14.因式分解下列各式:
(1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121
15.请同学用曾经学过的各种不同因式分解的方法因式分解16x2-24x+9
(1)方法1: (2)方法2:
16.因式分解下列各式:
(1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2
17.因式分解
(1)8x2-18 (2)x2-(a-b)x-ab
18.因式分解下列各式
(1)9x4+35x2-4 (2)x2-y2-2yz-z2
(3)a(b2-c2)-c(a2-b2)
19.因式分解(2x+1)(x+1)+(2x+1)(x-3)
20.因式分解39x2-38x+8
21.利用因式分解求(6512 )2-(3412 )2之值
22.因式分解a(b2-c2)-c(a2-b2)
23.a、b、c是整数,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值
24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2
25.因式分解xy2-2xy-3x-y2-2y-1
26.因式分解4x2-6ax+18a2
27.因式分解20a3bc-9a2b2c-20ab3c
28.因式分解2ax2-5x+2ax-5
29.因式分解4x3+4x2-25x-25
30.因式分解(1-xy)2-(y-x)2
31.因式分解
(1)mx2-m2-x+1 (2)a2-2ab+b2-1
32.因式分解下列各式
(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2
33.因式分解:xy2-2xy-3x-y2-2y-1
34.因式分解y2(x-y)+z2(y-x)
35.设x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根
36.(1)因式分解x2+x+y2-y-2xy=?
(2)承(1)若x-y=99求x2+x+y2-y-2xy之值?
参考资料:http://www.223t.com/UserFiles/2007050721055798663.rar
杨亚圣
2009-03-08 · 超过10用户采纳过TA的回答
知道答主
回答量:84
采纳率:0%
帮助的人:39.5万
展开全部
2.1分解因式
同步训练7:
1. 下列各式从左到右的变形是分解因式的是( )。
A.a(a-b)=a2-ab
B.a2-2a+1=a(a-2)+1
C.x2-x=x(x-1)
D.x2- =(x+ )(x- )
2.把下列各式分解因式正确的是( )
A.x y2-x2y=x(y2-xy)
B.9xyz-6 x2y2=3xyz(3-2xy)
C.3 a2x-6bx+3x=3x(a2-2b)
D. x y2+ x2y= xy(x+y)
3.(-2)2001+(-2)2002等于( )
A.-22001 B.-22002 C.22001 D.-2
4.-6xn-3x2n分解因式正确的是( )
A.3(-2xn-x2n) B.-3xn(2-xn) C.-3(2xn+x2n) D.-3xn(xn+2)
5.分解因式与整式乘法的关系是¬¬¬__________。
6.计算93-92-8×92的结果是__________。
7.如果a+b=10,ab=21,则a2b+ab2的值为_________。
8.连一连:
9x2-4y2 a(a+1)2
4a2-8ab+4 b2 -3a(a+2)
-3 a2-6a 4(a-b)2
a3+2 a2+a (3x+2y)(3x-2y)
9.利用简便方法计算:
(1)23×2.718+59×2.718+18×2.718
(2)57.6×1.6+57.6×18.4+57.6×(-20)
10.32000-4×31999+10×31998能被7整除吗?试说明理由。

2.2提公因式法
同步训练8:
1. 下列各式得公因式是a得是( )
A. ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma
2. -6xyz+3xy2-9x2y的公因式是( )
A. -3x B.3xz C.3yz D.-3xy
3. 把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是( )
A.8(7a-8b)(a-b)B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)
4.把(x-y)2-(y-x)分解因式为( )
A.(x-y)(x-y-1) B.(y-x)(x-y-1)
C.(y-x)(y-x-1) D.(y-x)(y-x+1)
5.下列各个分解因式中正确的是( )
A.10ab2c+6ac2+2ac=2ac(5b2+3c)
B.(a-b)3-(b-a)2=(a-b)2(a-b+1)
C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)
D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)
6.观察下列各式①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2和y2。其中有公因式的是( )
A.①② B。②③ C.③④ D.①④
7.当n为_____时,(a-b)n=(b-a)n;当n为______时,(a-b)n=-(b-a)n。(其中n为正整数)
8.多项式-ab(a-b)2+a(b-a)2-ac(a-b)2分解因式时,所提取的公因式应是_____。
9.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×________。
10.多项式18xn+1-24xn的公因式是_______。
11.把下列各式分解因式:
(1)15×(a-b)2-3y(b-a)
(2)(a-3)2-(2a-6)
(3)-20a-15ax
(4)(m+n)(p-q)-(m+n)(q+p)
12.利用分解因式方法计算:
(1)39×37-13×34
(2)29×19.99+72×19.99+13×19.99-19.99×14
13.先化简,再求值:
已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9,R2=18.5,R3=18.6,I=2.3时,求U的值。
14.已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值。

答案:
1.D 2.D 3.C 4.C 5.D 6.B 7.偶数 奇数 8.-a(a-b)2
9.(a-b+x-y) 10。6xn 3x-4
11。(1)3(a-b)(5ax-5bx+y);(2)(a-3)(a-5);(3)-5a(4+3x);(4)-2q(m+n)
12。(1)原式=39×37-39×33=39(37-27)=390
(2)原式=19.99(29+72+13-14)=19.99×100=1999
13. U=I(R1+R2+R3)=2.3(12.9+18.5+18.6)=2.3*50=115
2.3运用公式法
同步练习9:
1,下列各式中不能用平方差公式分解的是( )
A,-a2+b2 B,-x2-y2 C,49x2y2-z2 D 16m4-25n2
2, 下列各式中能用完全平方公式分解的是( )
①x2-4x+4 ②6x2+3x+1 ③ 4x2-4x+1 ④ x2+4xy+2y2 ⑤9x2-20xy+16y2
A,①② B,①③ C,②③ D,①⑤
3,在多项式①16x5-x ②(x-1)2-4(x-1)+4 ③(x+1)4-4x(x+1)2+4x2 ④-4x2-1+4x中,分解因式的结果中含有相同因式的是( )
A,①② B,③④ C,①④ D, ②③
4,分解因式3x2-3x4的结果是( )
A,3(x+y2)(x-y2) B,3(x+y2)(x+y)(x-y) C,3(x-y2)2 D, 3(x-y)2(x+y)2
5,若k-12xy+9x2是一个完全平方式,那么k应为( )
A,2 B,4 C,2y2 D, 4y2
6,若x2+2(m-3)x+16, 是一个完全平方式,那么m应为( )
A,-5 B,3 C,7 D, 7或-1
7,若n 为正整数,(n+11)2-n2 的值总可以被k整除,则k等于( )
A,11 B,22 C,11或22 D,11的倍数
8,( )2+20pq+25q2= ( )2
9,分解因式x2-4y2=
10, 分解因式ma2+2ma+m= .
11, 分解因式2x3y+8x2y2+8xy3 .
12,运用平方差公式可以可到:两个偶数的平方差一定能被 整除。
13,分解多项式
(1)16x2y2z2-9
(2)81(a+b)2-4(a-b)2
14, 试用简便方法计算:1982-396 +2022
15,已知x=40,y=50,试求x4-2x2y2+y4的值。

2003—2004学年度第二学期八年级数学单元测试(二)
《分解因式》
班别:__________学号:__________姓名:__________评分:__________
一、填空题:(每小题2分,共20分)
1、 中各项的公因式是__________。
2、分解因式 ____________________。
3、分解因式 ____________________。
4、分解因式 ____________________。
5、分解因式 =____________________。
6、若 。
7、
8、 __________。
9、当 取__________时,多项式 取得最小值是__________。
10、 的值是__________。
二、选择题:(每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10
答案
1、下列各式从左到右的变形,是因式分解的是:( )
A、 B、
C、 D、
2、下列多项式,不能运用平方差公式分解的是( )
A、 B、 C、 D、
3、下列各式可以用完全平方公式分解因式的是( )
A、 B、 C、 D、
4、把多项式 分解因式的结果是( )
A、 B、 C、 D、
5、若 是一个完全平方式,则 的值为( )
A、6 B、±6 C、12 D、±12
6、 是下列哪个多项式分解的结果( )
A、 B、 C、 D、
7、若 ( )
A、-11 B、11 C、-7 D、7
8、 中,有一个因式为 ,则 值为( )
A、2 B-2 C、6 D、-6
9、已知 ( )
A、2 B、-2 C、4 D、-4
10、若三角形的三边长分别为 、 、 ,满足 ,则这个三角形是( )
A、等腰三角形 B、直角三角形 C、等边三角形 D、三角形的形状不确定
三、把下列各式分解因式:(每小题4分,共28分)
1、 2、

3、 4、

5、 6、

7、

四、用简便方法计算:(每小题5分,共10分)
1、 2、

五、(6分)已知: 的值。

六、(6分)利用因式分解说明: 能被140整除。

七、附加题:(每小题5分,共20分)

4、若 =0,求证: 、 、 三个数中至少有两个数相等。

八年级数学(下)第二章《因式分解》测试题
姓名___________ 班级___________ 分数___________
一、选择题(10×3′=30′)
1、下列从左边到右边的变形,是因式分解的是( )
A、 B、
C、 D、
2、下列多项式中能用平方差公式分解因式的是( )
A、 B、 C、 D、
3、若 ,则E是( )
A、 B、 C、 D、
4、若 是 的因式,则p为( )
A、-15 B、-2 C、8 D、2
5、如果 是一个完全平方式,那么k的值是( )
A、 15 B、 ±5 C、 30 D ±30
6、△ABC的三边满足a2-2bc=c2-2ab,则△ABC是( )
A、等腰三角形 B、直角三角形 C、等边三角形 D、锐角三角形
7、已知2x2-3xy+y2=0(xy≠0),则xy +yx 的值是( )
A 2,212 B 2 C 212 D -2,-212
8、要在二次三项式x2+□x-6的□中填上一个整数,使它能按x2+(a+b)x+ab型分解为(x+a)(x+b)的形式,那么这些数只能是 ( )
A.1,-1; B.5,-5; C.1,-1,5,-5;D.以上答案都不对
9、已知二次三项式x2+bx+c可分解为两个一次因式的积(x+α)(x+β),下面说法中错误的是 ( )
A.若b>0,c>0,则α、β同取正号;
B.若b<0,c>0,则α、β同取负号;
C.若b>0,c<0,则α、β异号,且正的一个数大于负的一个数;
D.若b<0,c<0,则α、β异号,且负的一个数的绝对值较大.
10、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2-ab-bc-ca的值为( )
A、0 B、1 C、2 D、3
二、选择题(10×3′=30′)
11、已知: ,那么 的值为_____________.
12、分解因式:ma2-4ma+4a=_________________________.
13、分解因式:x(a-b)2n+y(b-a)2n+1=_______________________.
14、△ABC的三边满足a4+b2c2-a2c2-b4=0,则△ABC的形状是__________.
15、若 ,则 =___________.
16、多项式 的公因式是___________.
17、若x2+2(m-3)x+16是完全平方式,则m=___________.
18、若a2+2a+b2-6b+10=0, 则a=___________,b=___________.
19、若(x2+y2)(x2+y2-1)=12, 则x2+y2=___________.
20、已知 为非负整数,且 ,
则 ___________.
三、把下列各式因式分解(10×4′=40′)
(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

四、解答题(4×5′=20′)
31、求证:无论x、y为何值, 的值恒为正。

32、设 为正整数,且64n-7n能被57整除,证明: 是57的倍数.

33、一个正整数a恰好等于另一个正整数b的平方,则称正整数a为完全平方数.如 ,64就是一个完全平方数;若a=29922+29922×29932+29932.
求证a是一个完全平方数.

34、设n为大于1正整数,证明:n4+4是合数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
z852105259
2009-03-07 · TA获得超过1715个赞
知道答主
回答量:212
采纳率:0%
帮助的人:0
展开全部
1.(a+3b)^2-5a-15b
=(a+3b)^2-5(a+3b)
=(a+3b)(a+3b-5)

2.am-an-m^2+n^2
=a(m-n)-(m^2-n^2)
=a(m-n)-(m-n)(m+n)
=(m-n)(a-m-n)

1.x^2+2x-8
2.x^2+3x-10
3.x^2-x-20
4.x^2+x-6
5.2x^2+5x-3
6.6x^2+4x-2
7.x^2-2x-3
8.x^2+6x+8
9.x^2-x-12
10.x^2-7x+10
11.6x^2+x+2
12.4x^2+4x-3
解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
参考资料:http://zhidao.baidu.com/question/67232312.html?fr=qrl
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式