高中数学:抽象函数的对称问题?

已知函数f(x+a)是偶函数,则f(x)的对称轴是:则f(2x)的对称轴是:请写推导过程!多谢已知函数f(2x+a)是偶函数,则f(x)的对称轴是:则f(2x)的对称轴是... 已知函数f(x+a)是偶函数,则f(x)的对称轴是: 则f(2x)的对称轴是:
请写推导过程!多谢
已知函数f(2x+a)是偶函数,则f(x)的对称轴是:则f(2x)的对称轴是:
请写推导过程!多谢
Ps:巨坑问题。请大神指导!欢迎大家讨论!
展开
 我来答
匿名用户

2019-10-20
展开全部

由函数f(x+a)是偶函数可得f(-x+a)=f(x+a),令-x+a=t,则-x=t-a,x=a-t,x+a=2a-t,从而f(t)=f(2a-t),即f(x)=f(2a-x),2a-x=0,x=2a,f(x)的对称轴是x=2a,

f(2x)=f(2a-2x),2a-2x=0,x=a,f(2x)的对称轴是x=a。

追问

感谢您及时回复指导!本着讨论提高追问:

  1. 您只看到一题,后题没答。两题并论有对比意义

  2. 须承认:用复合函数t进行替代似乎是解决抽象函数表达式的万能法,但我发现此法的结果未必正确。值得后面仔细分析。此问一题:f(x+a)偶函数则f(x+a)=f(-x+a),据对称公式f(x+a)=f(-x+a),f(x)关于x=a对称。另:f(x+a)是f(x)左移a,则f(x)在f(x+a)右方a单位,对称轴为x=a。

西域牛仔王4672747
2019-10-22 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30559 获赞数:146240
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
1、f(x+a) 是偶函数,则 f(-x+a)=f(x+a),因此函数 f(x) 图像关于 x=a 对称。
由于 f(-2x+a)=f(2x+a),因此 f(2x) 对称轴 x=a 。
2、f(2x+a) 是偶函数,则 f(-2x+a)=f(2x+a),因此 f(x) 对称轴 x=a,
f(2x) 对称轴也是 x=a。
更多追问追答
追问
多谢指导,问此题是因其有巨坑:在对称问题中使用复合函数t会产生问题:
f(x)关于x=a对称这个没有疑问,但f(2x)的对称轴一定不是x=a,应该是x=a/2。y=(x-1)²关于x=1对称,则y=(2x-1)²关于x=1/2对称。我知其然不解起所以然,故发此问。
第二题问题更多。须进一步分析。因此先放下。集中精力讨论第一题中的f(2x)的对称轴的正确解法吧。多谢
追答
嗯,是我大意了。你是正确的。
令 g(x) = f(2x),由于 f(-x+a) = f(x+a),因此 f(-2x+a)=f(2x+a),
也即 f[2(-x+a/2)] = f[2(x+a/2)],
也即是 g(-x+a/2) = g(x+a/2),它关于 x=a/2 对称 。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式