若曲线y=y(x)由x=t+cost e^y+ty+sint+1确定,则曲线在t=0的切线方程

e^y+ty+sint=1... e^y+ty+sint=1 展开
 我来答
焉思咎芷若
2020-11-13 · TA获得超过1276个赞
知道小有建树答主
回答量:1812
采纳率:100%
帮助的人:10.4万
展开全部
解:
因为
dx/dt=1+cost
dy/dt=1-sint
所以
dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)
又x'(t)=1+cost>=0,x(t)单调不减
于是得x=t+1+sint=1,t有唯一解t=0。y=t+cost=1,该点为(1,1)
dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)=1/2
得到切线方程y=(1/2)(x-1)+1,
即y=(1/2)x+1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式