高阶常微分方程解法

 我来答
今天不上火sky
2021-05-12
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
一般来说,高阶微分方程的求解比较复杂,在此仅介绍几种容易求解的类型,这几种方程的解法思路主要是利用变换将高阶方程化为较低阶的方程,将这种方法称为降阶法(method of reduction of order)。

型的微分方程
形如的方程,这类方程只要逐次积分n次就可以得到其通解,每积分一次得到一个任意常数,在通解中含有n个任意常数。

型的微分方程
形如型的方程,这类方程的特点是右端函数不显含未知函数y。
如果设,则,微分方程变为,这是一个关于变量x,p的一阶微分方程。
设其通解为,由于,因此又得到一个一阶微分方程,两边积分,便得到方程式的通解为。

型的微分方程
形如型的方程,这类方程的特点是右端函数不显含自变量x。
设,这时可以将y看作新的自变量,p作为y的函数,则有,于是微分方程就变为,这是一个关于变量y,p的一阶微分方程,设它的通解为,即,将方程分离变量并积分,便得到的通解为。[2]
夕资工业设备(上海)
2024-11-15 广告
夕资工业设备(上海)有限公司的工作人员指出,读数头315420-14是一种高精度的传感器,用于测量各种物理量,如压力、温度、位移等。该读数头具有高稳定性、高精度和高可靠性等特点,广泛应用于工业自动化、智能制造、能源等领域。读数头315420... 点击进入详情页
本回答由夕资工业设备(上海)提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
?>

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式