arctan1/x的极限x趋近于0吗?

 我来答
简单生活Eyv
2022-04-09 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:24.8万
展开全部

不是趋近于0,过程如下:

假设f(x)=arctan(1/x)

则f(0+0)=lim(x-0+) arctan(1/x) =pi/2

f(0-0)=-pi/2

因为f(0+0)不等于f(0-0)

所以,极限不存在。

先要用单调有界定理证明收敛,然后再求极限值。应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。

完善

极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。

对“变量”特有的概念理解还不十分清楚;对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。这样,人们使用习惯的处理常量数学的传统思想方法,思想僵化,就不能适应‘变量数学’的新发展。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式