arctan1/x的极限x趋近于0吗?
1个回答
展开全部
不是趋近于0,过程如下:
假设f(x)=arctan(1/x)
则f(0+0)=lim(x-0+) arctan(1/x) =pi/2
f(0-0)=-pi/2
因为f(0+0)不等于f(0-0)
所以,极限不存在。
先要用单调有界定理证明收敛,然后再求极限值。应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。
完善
极限思想的完善,与微积分的严格化的密切联系。在很长一段时间里,微积分理论基础的问题,许多人都曾尝试“彻底满意”地解决,但都未能如愿以偿。这是因为数学的研究对象已从常量扩展到变量,而人们习惯于用不变化的常量去思维,分析问题。
对“变量”特有的概念理解还不十分清楚;对“变量数学”和“常量数学”的区别和联系还缺乏了解;对“有限”和“无限”的对立统一关系还不明确。这样,人们使用习惯的处理常量数学的传统思想方法,思想僵化,就不能适应‘变量数学’的新发展。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询