求积分∫arctanx/x^2 dx
展开全部
你的问题可以化为
∫arctan(1/x) dx
于是可以用分部积分:
∫arctan(1/x) dx
=arctan(1/x)*x-∫x*1/(1+1/x^2) *(-1/x^2) dx
=arctan(1/x)*x+∫x*1/(1+x^2) dx
=arctan(1/x)*x+(1/2)∫1/(1+x^2) d(x^2+1)
=arctan(1/x)*x+(1/2)*ln(1+x^2)+c
∫arctan(1/x) dx
于是可以用分部积分:
∫arctan(1/x) dx
=arctan(1/x)*x-∫x*1/(1+1/x^2) *(-1/x^2) dx
=arctan(1/x)*x+∫x*1/(1+x^2) dx
=arctan(1/x)*x+(1/2)∫1/(1+x^2) d(x^2+1)
=arctan(1/x)*x+(1/2)*ln(1+x^2)+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询