∫cos^4xdx

 我来答
天然槑17
2022-05-28 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6120
采纳率:100%
帮助的人:33.8万
展开全部
(cosx)^2=(1+cos2x)/2
所以(cosx)^4=[1+2cos2x+(cos2x)^2]/4
(cos2x)^2=(1+cos4x)/2
所以(cosx)^4=1/4+(1/2)cos2x+(1+cos4x)/8
=3/8+(1/2)cos2x+(1/8)cos4x
∫3/8dx=3x/8
∫cos2xdx=(1/2)sin2x
∫cos4xdx=(1/4)sin4x
所以原式=3x/8+(1/2)*(1/2)sin2x+(1/8)*(1/4)sin4x+C
=3x/8+(1/4)*sin2x+(1/32)*sin4x+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式