有界函数不一定可积为什么?
原因如下:
可以假设这样一个函数f(x)=1(x是有理数的时候)=0(x是无理数的时候)那么f(x)在x为任意实数的时候,只有1和0两种取值,所以f(x)是有界的。
但是在任意区间内(无论是开区间还是闭区间),都有无数个有理数和无理数。所以f(x)在任意区间内斗有无数个间断点,所以这个函数在任意区间内斗不可积。
ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
扩展资料:
ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。又若M(L)为ƒ在D上的上(下)界,则任何大于(小于)M(L)的数也是ƒ在D上的上(下)界。根据确界原理,ƒ在定义域上有上(下)确界。
由ƒ (x)=sinx所定义的函数f:R→R是有界的。如果正弦函数是定义在所有复数的集合上,则不再是有界的。 函数 (x不等于-1或1)是无界的。当x越来越接近-1或1时,函数的值就变得越来越大。但是,如果把函数的定义域限制为[2, ∞),则函数就是有界的。
参考资料来源:百度百科——有界函数
2024-10-13 广告
广告 您可能关注的内容 |