对偶单纯形法求解过程
方法/步骤
1
建立初始单纯形表,计算检验数行;
2
基变化,先确定换出变量——解答列中的负元素(一般选最小的负元素)对应的基变量出基。然后确定换入变量,原则是: 在保持对偶可行的前提下,减少原始问题的不可行性;
3
按主元素进行换基迭代 (旋转运算、枢运算),将主元素变成1,主元列变成单位向量,得到 新的单纯形表。循环以上步骤,直至求出最优解。
总结
1.单纯形法的求解过程就是:在保持原始可行的前提下(b列保持≥0),通过逐步迭代实现对偶可行(检验数行≤0)。
2.对偶单纯形法思想就是:换个角度考虑LP求解过程:保持对偶可行的前提下(检验数行保持≤0) ,通过逐步迭代实现原始可行(b列≥0,从非可行解变成可行解)。
资料:
对偶单纯形法是指从对偶可行性逐步搜索出原始问题最优解的方法。
对偶单纯形方法纯形方法的一种对称变形.对于原单纯形方法而言,在迭代过程中始终保持相应的解对原问题是可行的,并不断改善对偶问题解(即判别系数)的可行性,直至可行。而对偶单纯形方法则是始终保持对偶问题的解的可行性,并不断改善原问题解的可行性,直至满足原问题。
在求解常数项小于零的线性规划问题时,可以把原始问题的常数项视为对偶问题的检验数,原始问题的检验数视为对偶问题的常数项。
优缺点
1、对偶单纯形法的优点: 不需要人工变量;当变量多于约束时,用对偶单纯形法可减少迭代次数。
2、对偶单纯形法缺点: 在初始单纯形表中对偶问题是基可行解,这点对多数线性规划问题很难做到。