因式分解法的十字相乘法算法过程???
例如:2x^2-13x+11=0然后分解因式,十字交叉法,即得:(x-1)(2x-11)=0“x^2”前面没系数的知道怎么算,有系数的不会了,不知道是怎么个“十字交叉”法...
例如:2x^2-13x+11=0 然后分解因式,十字交叉法,即得: (x-1)(2x-11)=0
“x^2”前面没系数的知道怎么算,有系数的不会了,不知道是怎么个“十字交叉”法?
谢谢!!!
(x-1)(2x-11)是怎么得出来的??? 展开
“x^2”前面没系数的知道怎么算,有系数的不会了,不知道是怎么个“十字交叉”法?
谢谢!!!
(x-1)(2x-11)是怎么得出来的??? 展开
7个回答
展开全部
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)χ+pq=(χ+p)(χ+q)。
原理:
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设总量为S, A所占的数量为M,B为S-M。
则:[A*M+B*(S-M)]/S=C
M/S=(C-B)/(A-B)
1-M/S=(A-C)/(A-B)
因此:M/S∶(1-M/S)=(C-B)∶(A-C)
这就是所谓的十字分解法。X增加,平均数C向A偏,A-C(每个A给B的值)变小,C-B(每个B获得的值)变大,两者如上相除=每个B得到几个A给的值。
展开全部
例1 把2x^2;-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
1 -1
╳
2 -3
1×(-3)+2×(-1)
=-5
1 -3
╳
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2;-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
� ╳
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
╳
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3
╳
1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
�╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
╳
2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b
╳
c d
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
1 -1
╳
2 -3
1×(-3)+2×(-1)
=-5
1 -3
╳
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2;-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
� ╳
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
╳
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3
╳
1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
�╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
╳
2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b
╳
c d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每
一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、实例。
1、把14x^2-67xy+18y^2分解因式
分析:把14x^2-67xy+18y^2看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y^2可分为y×18y , 2y×9y , 3y×6y
解: 因为 2 -9y (这里只能通过凑数来确定。)
╳
7 -2y
因为7×(-9)+2×(-2)=-67
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
2、十字相乘法的用处:(1)用十字相乘法来分解因式。
(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每
一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。
5、实例。
1、把14x^2-67xy+18y^2分解因式
分析:把14x^2-67xy+18y^2看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y^2可分为y×18y , 2y×9y , 3y×6y
解: 因为 2 -9y (这里只能通过凑数来确定。)
╳
7 -2y
因为7×(-9)+2×(-2)=-67
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
ax^2+bx+c=0
a=1时,就把c分解后凑出相加等于b的数。
如:x^2-x-6=0,-6=-3*2,-3+2=-1,所以拆成(x-3)(x+2)=0
a≠1时:2x^2-13x+11=0
2只能拆成1*2,11只能拆成1*11或(-1)*(-11)
1\/-1
2/\-11 1*(-11)+2*(-1)=-13,所以拆成(x-1)(2x-11)=0
再如:6x^2+5x-6=0
6=2*3=1*6,-6=(-1)*6=(-6)*1=(-2)*3=(-3)*2这里就需要尝试了。
最后可得:
2\/3
3/\(-2),2*(-2)+3*3=5=b,(2x+3)(3x-2)=0
a=1时,就把c分解后凑出相加等于b的数。
如:x^2-x-6=0,-6=-3*2,-3+2=-1,所以拆成(x-3)(x+2)=0
a≠1时:2x^2-13x+11=0
2只能拆成1*2,11只能拆成1*11或(-1)*(-11)
1\/-1
2/\-11 1*(-11)+2*(-1)=-13,所以拆成(x-1)(2x-11)=0
再如:6x^2+5x-6=0
6=2*3=1*6,-6=(-1)*6=(-6)*1=(-2)*3=(-3)*2这里就需要尝试了。
最后可得:
2\/3
3/\(-2),2*(-2)+3*3=5=b,(2x+3)(3x-2)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a b
c d
ac=“x^2”前面系数
bd=常数
可化为(a*x-b)(c*x-d)=0
c d
ac=“x^2”前面系数
bd=常数
可化为(a*x-b)(c*x-d)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询