已知矩形ABCD中, AB=2 2 ,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.(1
已知矩形ABCD中,AB=22,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;(2)过点P(0...
已知矩形ABCD中, AB=2 2 ,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.
展开
展开全部
(1)由题意可得点A,B,C的坐标分别为 (-
设椭圆的标准方程是
则2a=AC+BC, 即 2a=
所以b 2 =a 2 -c 2 =4-2=2. 所以椭圆的标准方程是
(2)由题意知,直线l的斜率存在,可设直线l的方程为y=kx+2. 由
因为M,N在椭圆上, 所以△=64k 2 -16(1+2k 2 )>0. 设M,N两点坐标分别为(x 1 ,y 1 ),(x 2 ,y 2 ). 则 x 1 + x 2 =-
若以MN为直径的圆恰好过原点,则
所以x 1 x 2 +y 1 y 2 =0, 所以,x 1 x 2 +(kx 1 +2)(kx 2 +2)=0, 即(1+k 2 )x 1 x 2 +2k(x 1 +x 2 )+4=0, 所以,
得k 2 =2, k=±
经验证,此时△=48>0. 所以直线l的方程为 y=
即所求直线存在,其方程为 y=±
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询