在直角三角形ABC中,∠ACB=30°,∠B=90°,D为AC的中点,E为BD的中点,AE的延长线交BC于点F(如图1).

在直角三角形ABC中,∠ACB=30°,∠B=90°,D为AC的中点,E为BD的中点,AE的延长线交BC于点F(如图1).将△ABD沿BD折起,二面角A-BD-C的大小记... 在直角三角形ABC中,∠ACB=30°,∠B=90°,D为AC的中点,E为BD的中点,AE的延长线交BC于点F(如图1). 将△ABD沿BD折起,二面角A-BD-C的大小记为θ(如图2).(Ⅰ)求证:面AEF⊥面BCD;面AEF⊥面BAD;(Ⅱ)当cosθ为何值时,AB⊥CD;(Ⅲ)在(Ⅱ)的条件下,求FB与平面BAD所成角的正弦值. 展开
 我来答
曲南霜Sd
2014-08-21 · 超过81用户采纳过TA的回答
知道答主
回答量:130
采纳率:50%
帮助的人:147万
展开全部
证明:(Ⅰ)在△ABC中,由∠ACB=30°,得AB=
1
2
AC

由D为AC的中点,得BD=
1
2
AC
.∴△ABD为等边三角形
则BD⊥AE,BD⊥EF,
∴BD⊥面AEF,
又∵BD?面BCD,∴面AEF⊥面BCD.
同理面AEF⊥面BAD…
(Ⅱ)由(Ⅰ)的证明可得∠AEF为二面角A-BD-C的平面角.过A作AO⊥面BCD,垂足为O.
∵面AEF⊥面BCD,∴O在FE上,连BO交CD延长线于M,
当AB⊥CD时,由三垂线定理的逆定理得BM⊥CM,
∴O为翻折前的等边三角形△ABD的中心.
OE=
1
3
AE
cosθ=?
1
3

因此当cosθ=?
1
3
时,AB⊥CD.…(7分)
(Ⅲ)过F作FG⊥AE交AE的延长线于G点,由(Ⅰ)面AEF⊥面BAD,则FG⊥面BAD
故∠FBG就是FA与平面BAD所成角
设AB=a,则AE=
3
2
a,EF=
3
a
6
,FB=
3
a
3

cosθ=?
1
3
?sin∠FEG=
2
2
3

GF=
3
a
6
×
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消