
定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0.(1)求f(1)和f
定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0.(1)求f(1)和f(-1)的值;(2)试判断f(x)的奇偶性,并加以...
定义在R上的函数f(x)满足对任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒为0.(1)求f(1)和f(-1)的值;(2)试判断f(x)的奇偶性,并加以证明.
展开
展开全部
(1)令x=y=1,得f(1)=f(1)+f(1)
∴f(1)=0
令x=y=-1,得f(1)=f(-1)+f(-1)
∴f(-1)=0
(2)令y=-1,由f(xy)=f(x)+f(y),得f(-x)=f(x)+f(-1)
又f(-1)=0
∴f(-x)=f(x)
又∵f(x)不恒为0
∴f(x)为偶函数
∴f(1)=0
令x=y=-1,得f(1)=f(-1)+f(-1)
∴f(-1)=0
(2)令y=-1,由f(xy)=f(x)+f(y),得f(-x)=f(x)+f(-1)
又f(-1)=0
∴f(-x)=f(x)
又∵f(x)不恒为0
∴f(x)为偶函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询