在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接

在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好... 在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),PC的长为2525;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(如图①是该过程的某个时刻),请你观察、猜想,并解答:PFPE的值是否发生变化?说明理由. 展开
 我来答
海角ad409
推荐于2016-10-24 · 超过60用户采纳过TA的回答
知道答主
回答量:124
采纳率:100%
帮助的人:59.6万
展开全部
解答:(1)解:在矩形ABCD中,∠A=∠D=90°,
AP=1,CD=AB=2,则PB=
5

∴∠ABP+∠APB=90°,
又∵∠BPC=90°,
∴∠APB+∠DPC=90°,
∴∠ABP=∠DPC,
∴△APB∽△DCP,
AP
CD
=
PB
PC
,即
1
2
=
5
PC

∴PC=2
5

故答案为:2
5


(2)
PF
PE
的值不变,理由为:
证明:过F作FG⊥AD,垂足为G,
则四边形ABFG是矩形,
∴∠A=∠PGF=90°,GF=AB=2,
∴∠AEP+∠APE=90°,
又∵∠EPF=90°,
∴∠APE+∠GPF=90°,
∴∠AEP=∠GPF,
∴△APE∽△GFP,
PF
PE
=
GF
AP
=
2
1
=2,
∴Rt△EPF中,tan∠PEF=
PF
PE
=2,
PF
PE
的值不变.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式