假设函数f(x)在[a,b]上连续,证明积分上限函数Φ(x)=∫f(t)dt在[a,b]上可导
2017-12-01
展开全部
:试证明fx在[a,b]上可积,则F(x)=f(t)dt在上连续 第六项第一题
答:f(x)在[a,b]上可积, 则 f(x)在[a,b]上有界, 所以,存在M,使得 |f(x)|≤M △F=F(x+△x)-F(x) =∫(x→x+△x)f(t)dt |△F|=|∫(x→x+△x)f(t)dt| ≤|∫(x→x+△x)Mdt| =M·|△t| ∴lim(△t→0)△F=0 ∴F(x)连续
引用cn#GkuBppBakQ的回答:
:试证明fx在[a,b]上可积,则F(x)=f(t)dt在上连续 第六项第一题
答:f(x)在[a,b]上可积, 则 f(x)在[a,b]上有界, 所以,存在M,使得 |f(x)|≤M △F=F(x+△x)-F(x) =∫(x→x+△x)f(t)dt |△F|=|∫(x→x+△x)f(t)dt| ≤|∫(x→x+△x)Mdt| =M·|△t| ∴lim(△t→0)△F=0 ∴F(x)连续
:试证明fx在[a,b]上可积,则F(x)=f(t)dt在上连续 第六项第一题
答:f(x)在[a,b]上可积, 则 f(x)在[a,b]上有界, 所以,存在M,使得 |f(x)|≤M △F=F(x+△x)-F(x) =∫(x→x+△x)f(t)dt |△F|=|∫(x→x+△x)f(t)dt| ≤|∫(x→x+△x)Mdt| =M·|△t| ∴lim(△t→0)△F=0 ∴F(x)连续
展开全部
M那里不应该有积分号,其它都很完美。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询