求证:以抛物线的焦点弦为直径的圆与抛物线的标准相切.
1个回答
展开全部
设焦点弦是PQ,
设PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=PF,Q到准线的距离d2=QF.
又M到准线的距离d是梯形的中位线,故有d=(PF+QF)/2=PQ/2.
即圆心M到准线的距离等于半径PQ/2,所以,圆与准线是相切.
设PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=PF,Q到准线的距离d2=QF.
又M到准线的距离d是梯形的中位线,故有d=(PF+QF)/2=PQ/2.
即圆心M到准线的距离等于半径PQ/2,所以,圆与准线是相切.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询