一个四位数能被3整除且至少含有一个数字6,这样的四位数共有多少个?

 我来答
faker1718
2022-06-09 · TA获得超过987个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:52.7万
展开全部
从1000到9999这9000个数中,共有3000个能被3整除的数,
能被3整除且不含有数字6的四位数:在最高位上,不能为0和6,因此有8种可能情况;在百、十位上不能为6,各有9种可能情况;在个位上,不仅不能为6,还应使整个四位数被3整除,因此,所出现的数字应与前3位数字之和被3除的余数有关:
当余数为0时,个位上可以为0,3,9中的一个;
当余数为1时,个位上可为2,5,8中的一个;
当余数为2时,个位上可为1,4,7中的一个;
总之,不论前3位数如何,个位上都有3种可能情况,
所以由乘法原理知,这类4位数个数为:8×9×9×3=1944,
因此能被3整除且含有数字6的四位数有:3000-1944=1056(个);
答:这样的四位数共有1056个.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式