(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°

(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到... (本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离. 展开
 我来答
百度网友af37e464020
推荐于2016-01-27 · TA获得超过108个赞
知道答主
回答量:122
采纳率:100%
帮助的人:123万
展开全部
(1)证明:见解析;(2)点A到平面PBC的距离等于

本题考查线面平行,线面垂直,线线垂直,考查点到面的距离,解题的关键是掌握线面平行,线面垂直的判定方法,利用等体积转化求点面距离
(1)利用线面垂直证明线线垂直,即证BC⊥平面PCD;
(2)利用等体积转化求点A到平面PBC的距离.
(1)证明:∵ PD⊥平面ABCD,BC 平面ABCD,∴ PD⊥BC.
由∠BCD=90°,得CD⊥BC.又PD∩DC=D,PD,DC 平面PCD,
∴ BC⊥平面PCD.∵ PC 平面PCD,
故PC⊥BC.-------------------4分
(2)解:(方法一)分别取AB,PC的中点E,F,连DE,DF, 则易证DE∥CB,DE∥平面PBC,点D,E到平面PBC的距离相等.
又点A到平面PBC的距离等于点E到平面PBC的距离的2倍,由(1)知,BC⊥平面PCD,
∴平面PBC⊥平面PCD.
∵ PD=DC,PF=FC,∴ DF⊥PC.
平面PBC∩平面PCD=PC,∴ DF⊥平面PBC于F.
易知DF= ,故点A到平面PBC的距离等于 .--12分
(方法二):连接AC,设点A到平面PBC的距离为h.
∵ AB∥DC,∠BCD=90°,∴ ∠ABC=90°.
由AB=2,BC=1,得△ABC的面积S △ABC =1.
由PD⊥平面ABCD,及PD=1,得三棱锥P-ABC的体积
V= S ABC ·PD= .∵ PD⊥平面ABCD,DC 平面ABCD,∴ PD⊥DC.
∴ PD=DC=1,∴ PC=
由PC⊥BC,BC=1,得△PBC的面积S △PBC
∵ V A - PBC =V P - ABC ,∴ S △PBC ·h=V=
得h=
故点A到平面PBC的距离等于 .----------12分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式