如图在四边形ABCD中,对角线AC与BD相交于点E,若AC平分DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;

如图在四边形ABCD中,对角线AC与BD相交于点E,若AC平分DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④△AB... 如图在四边形ABCD中,对角线AC与BD相交于点E,若AC平分DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC= ∠DAB;④△ABD是正三角形。请写出正确结论的序号 (把你认为正确结论的序号都填上)。 展开
 我来答
手机用户20023
推荐于2016-11-10 · TA获得超过195个赞
知道答主
回答量:125
采纳率:0%
帮助的人:70.6万
展开全部
①③

解:∵AB=AC,AC=AD,
∴AB=AD
∵AC平分∠DAB
∴AC垂直平分BD,①正确;
∴DC=CB,
易知DC>DE,
∴BC>DE,②错;
D、C、B可看作是以点A为圆心的圆上,
根据圆周角定理,得∠DBC= ∠DAB,③正确;
当△ABC是正三角形时,∠CAB=60°
那么∠DAB=120°,
如图所示是不可能的,所以错误.
故①③对.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式