题目如图,求解
展开全部
设这个行列式为An
按照1列展开:An=(x+y)乘以下面的行列式
x+y,xy,0......0,0
1,x+y,xy......0,0
0,1,x+y......0,0
.................. (这个行列式为A(n-1))
0,0,0......x+y,xy
0,0,0......1,x+y
加上(-1)乘以下面的行列式:
xy,0............0,0
1,x+y,xy......0,0
0,1,x+y......0,0
.................. (这个行列式为xyA(n-2))
0,0,0......x+y,xy
0,0,0......1,x+y
所以:An=(x+y)A(n-1)-xyA(n-2)) A1=x+y A2=x^2+xy+y^2
所以用归纳法得
Dn=(x的(n+1)次方-y的(n+1)次方)/(x-y)
按照1列展开:An=(x+y)乘以下面的行列式
x+y,xy,0......0,0
1,x+y,xy......0,0
0,1,x+y......0,0
.................. (这个行列式为A(n-1))
0,0,0......x+y,xy
0,0,0......1,x+y
加上(-1)乘以下面的行列式:
xy,0............0,0
1,x+y,xy......0,0
0,1,x+y......0,0
.................. (这个行列式为xyA(n-2))
0,0,0......x+y,xy
0,0,0......1,x+y
所以:An=(x+y)A(n-1)-xyA(n-2)) A1=x+y A2=x^2+xy+y^2
所以用归纳法得
Dn=(x的(n+1)次方-y的(n+1)次方)/(x-y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询