映射的分类:单射、满射、双射分别是什么意思?请规范解释,谢谢!
展开全部
设f是由集合A到集合B的映射,如果x,y∈A,且x≠y时有f(x)≠f(y),则称f为由A到B的单射. 在数学里,单射函数为一函数,其将不同的引数连接至不同的值上.更精确地说,函数f被称为是单射的,当对每一值域内的y,存在至多一个定义域内的x使得f(x) = y. 另一种说法为,f为单射,当若f(a) = f(b),则a = b(或若a≠b,则f(a)≠f(b)),其中a、b属于定义域.
1个函数称为满射:如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应.
形式化的定义如下:
函数为满射,当且仅当对任意b,存在a满足f(a) = b.
将一个满射的陪域中每个元素的原像集看作一个等价类,我们可以得到以该等价类组成的集合(原定义域的商集)为定义域的一个双射.
既是单射又是满射的映射称为双射,亦称“一一映射” 设f是从集合A到集合B的映射,若R(f)=B,即B中任一元素b都是A中某元素的像,则称f为A到B上的满射;若对A中任意两个不同元素a(1)不等于a(2),他们的像f不等于f,则称f为A到B的单射;若映射f既是单射,又是满射,则称映射f为A到B的“双射”(或“一一映射”).函数为双射当且仅当每个可能的像有且仅有一个变量与之对应. 函数f:A → B为双射当且仅当对任意b∈B存在唯一a∈A满足f(a) = b. 函数f :A → B为双射当且仅当其可逆,即,存在函数g:B → A满足g o f = A上的恒等函数,且f o g为B上的恒等函数. 两个双射的复合也是双射.如g o f为双射,则仅能得出f为单射且g为满射. 同一集合上的双射构成一个对称群. 如果X,Y皆为实数集R,则双射函数f:R→R可以被视觉化为两根任意的水平直线只相交正好一次.(这是水平线测试的一个特例.) 映射函数
1个函数称为满射:如果每个可能的像至少有一个变量映射其上(即像集合B中的每个元素在A中都有一个或一个以上的原像),或者说值域任何元素都有至少有一个变量与之对应.
形式化的定义如下:
函数为满射,当且仅当对任意b,存在a满足f(a) = b.
将一个满射的陪域中每个元素的原像集看作一个等价类,我们可以得到以该等价类组成的集合(原定义域的商集)为定义域的一个双射.
既是单射又是满射的映射称为双射,亦称“一一映射” 设f是从集合A到集合B的映射,若R(f)=B,即B中任一元素b都是A中某元素的像,则称f为A到B上的满射;若对A中任意两个不同元素a(1)不等于a(2),他们的像f不等于f,则称f为A到B的单射;若映射f既是单射,又是满射,则称映射f为A到B的“双射”(或“一一映射”).函数为双射当且仅当每个可能的像有且仅有一个变量与之对应. 函数f:A → B为双射当且仅当对任意b∈B存在唯一a∈A满足f(a) = b. 函数f :A → B为双射当且仅当其可逆,即,存在函数g:B → A满足g o f = A上的恒等函数,且f o g为B上的恒等函数. 两个双射的复合也是双射.如g o f为双射,则仅能得出f为单射且g为满射. 同一集合上的双射构成一个对称群. 如果X,Y皆为实数集R,则双射函数f:R→R可以被视觉化为两根任意的水平直线只相交正好一次.(这是水平线测试的一个特例.) 映射函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
亚远景信息科技
2024-12-11 广告
2024-12-11 广告
上海亚远景信息科技有限公司是国内汽车行业咨询及评估领军机构之一,深耕于ASPICE、敏捷SPICE、ISO26262功能安全、ISO21434车辆网络安全领域,拥有20年以上的行业经验,专精于培训、咨询及评估服务,广受全球车厂及供应商赞誉,...
点击进入详情页
本回答由亚远景信息科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询