高中数学参数方程
参数方程如下:
一般在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数:x=f(t),y=g(t),并且对于t的每一个允许的取值,由方程组确定的点(x,y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数。
圆的参数方程
x=a+r cosθ y=b+r sinθ (a,b)为圆心坐标 r为圆半径 θ为参数
椭圆的参数方程
x=a cosθ y=b sinθ a为长半轴 长 b为短半轴长 θ为参数
双曲线的参数方程
x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程
x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程
x=x'+tcosa y=y'+tsina , x', y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。
数学学习技巧
新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课内的学习效率,寻求正确的 学习 方法 。
上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用“不清楚立即翻书”之举。认真独立完成作业,勤于思考,对于有些题目,由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
在每个阶段的学习中要进行整理和归纳 总结 ,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
广告 您可能关注的内容 |