求函数z=xy/[(x+y)(x-y)]当x=2,y=1,△x=0.01,△y=0.03时的全微分及全增量的具体求法
2个回答
展开全部
△z=△(x+△x,y+△y)-△(x,y)
=[(x+△x)(y+△y)]/[(x+△x+y+△y)(x+△x-y-△y)-xy/[(x+y)(x-y)]
代入数值可得到全增量为:
△z=0.0282.
z=xy/(x^2-y^2)
dz=[(ydx+xdy)(x^2-y^2)-xy(2xdx-2ydy)]/(x^2-y^2)^2
={[-y(x^2+y^2)]dx+x(x^2+y^2)dy}/(x^2-y^2)^2
dz=(x^2+y^2)(xdy-ydx)/(x^2-y^2)^2.
代入数值可得到:
dz=0.0278.
=[(x+△x)(y+△y)]/[(x+△x+y+△y)(x+△x-y-△y)-xy/[(x+y)(x-y)]
代入数值可得到全增量为:
△z=0.0282.
z=xy/(x^2-y^2)
dz=[(ydx+xdy)(x^2-y^2)-xy(2xdx-2ydy)]/(x^2-y^2)^2
={[-y(x^2+y^2)]dx+x(x^2+y^2)dy}/(x^2-y^2)^2
dz=(x^2+y^2)(xdy-ydx)/(x^2-y^2)^2.
代入数值可得到:
dz=0.0278.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |