平行四边形的定义、性质、判定
9个回答
推荐于2016-12-01
展开全部
定义: 在同一平面内两组对边分别平行的四边形叫做平行四边形。
⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)
⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)
⑶在两条平行线之间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)
⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形
3.一组对边平行且相等的四边形是平行四边形
4.两组对角分别相等的四边形是平行四边形
5.两组对边分别平行的四边形是平行四边形
⑴连接平行四边形各边的中点所得图形是平行四边形。
⑵如果一个四边形的对角线互相平分,
那么连接这个四边形的中点所得图形是平行四边形。
⑶平行四边形的对角相等,两邻角互补
⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
⑸平行四边形是中心对称图形,对称中心是两对角线的交点。
⑹平行四边形的面积等于底和高的积。(可视为矩形)
平行四边形中常用辅助线的添法
一、连对角线或平移对角线
二、过顶点作对边的垂线构造直角三角形
三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
四、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
五、过顶点作对角线的垂线,构成线段平行或三角形全等
平行四边形对边平行
平行四边形的对角相等
平行四边形的对边相等
平行四边形的对角线互相平分
平行四边形是中心对称图形,两条对角线的交点是对称中心
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)
⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)
⑶在两条平行线之间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)
⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形
3.一组对边平行且相等的四边形是平行四边形
4.两组对角分别相等的四边形是平行四边形
5.两组对边分别平行的四边形是平行四边形
⑴连接平行四边形各边的中点所得图形是平行四边形。
⑵如果一个四边形的对角线互相平分,
那么连接这个四边形的中点所得图形是平行四边形。
⑶平行四边形的对角相等,两邻角互补
⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
⑸平行四边形是中心对称图形,对称中心是两对角线的交点。
⑹平行四边形的面积等于底和高的积。(可视为矩形)
平行四边形中常用辅助线的添法
一、连对角线或平移对角线
二、过顶点作对边的垂线构造直角三角形
三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线
四、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。
五、过顶点作对角线的垂线,构成线段平行或三角形全等
平行四边形对边平行
平行四边形的对角相等
平行四边形的对边相等
平行四边形的对角线互相平分
平行四边形是中心对称图形,两条对角线的交点是对称中心
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
展开全部
由四条线段围成的平面图形叫四边形。由规则四边形和不规则四边形组成.
规则四边形:
平行四边形(包括:,普通平行四边形,矩形,菱形,正方形)
梯形(包括:普通梯形,直角梯形,等腰梯形)
四边形的内角和和外角和均为360度
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形,矩形的中点四边形是菱形,正方形的中点四边形是正方形,平行四边形的中点四边形是平行四边形。
平行四边形的性质和判定
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分
.
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形
.
注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形
.
矩形的性质和判定
定义:有一个角是直角的平行四边形叫做矩形.
性质:①矩形的四个角都是直角;
②矩形的对角线相等
.
注意:矩形具有平行四边形的一切性质
.
判定:①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
.
菱形的性质和判定
定义:有一组邻边相等的平行四边形叫做菱形.
性质:①菱形的四条边都相等;
②菱形的对角线互相垂直,并且每一条对角线平分一组对角
.
注意:菱形也具有平行四边形的一切性质
.
判定:①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
正方形的性质
定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.
性质:①正方形的四个角都是直角,四条边都相等;
②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
.
注意:正方形具有平行四边形、矩形、菱形的一切性质.
梯形及特殊梯形的定义
梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)
等腰梯形:两腰相等的梯形叫做等腰梯形.
直角梯形:一腰垂直于底的梯形叫做直角梯形.
等腰梯形的性质
1、等腰梯形两腰相等、两底平行;
2、等腰梯形在同一底上的两个角相等;
3、等腰梯形的对角线相等;
4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴.
等腰梯形的判定
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形.
规则四边形:
平行四边形(包括:,普通平行四边形,矩形,菱形,正方形)
梯形(包括:普通梯形,直角梯形,等腰梯形)
四边形的内角和和外角和均为360度
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形,矩形的中点四边形是菱形,正方形的中点四边形是正方形,平行四边形的中点四边形是平行四边形。
平行四边形的性质和判定
定义:两组对边分别平行的四边形叫做平行四边形.
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分
.
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形
.
注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形
.
矩形的性质和判定
定义:有一个角是直角的平行四边形叫做矩形.
性质:①矩形的四个角都是直角;
②矩形的对角线相等
.
注意:矩形具有平行四边形的一切性质
.
判定:①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
.
菱形的性质和判定
定义:有一组邻边相等的平行四边形叫做菱形.
性质:①菱形的四条边都相等;
②菱形的对角线互相垂直,并且每一条对角线平分一组对角
.
注意:菱形也具有平行四边形的一切性质
.
判定:①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
正方形的性质
定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.
性质:①正方形的四个角都是直角,四条边都相等;
②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
.
注意:正方形具有平行四边形、矩形、菱形的一切性质.
梯形及特殊梯形的定义
梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)
等腰梯形:两腰相等的梯形叫做等腰梯形.
直角梯形:一腰垂直于底的梯形叫做直角梯形.
等腰梯形的性质
1、等腰梯形两腰相等、两底平行;
2、等腰梯形在同一底上的两个角相等;
3、等腰梯形的对角线相等;
4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴.
等腰梯形的判定
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
平行四边形的
定义:两组对边分别平行的四边形叫做平行四边形.
性质:
①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:
①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
定义:两组对边分别平行的四边形叫做平行四边形.
性质:
①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:
①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义:两组对边分别相等的四边形
性质:平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分
判断:两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两条对角线互相平分的四边形是平行四边形
性质:平行四边形的对边相等
平行四边形的对角相等
平行四边形的对角线互相平分
判断:两组对边分别平行的四边形是平行四边形
两组对角分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
两条对角线互相平分的四边形是平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
性质:①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分 .
判定:①两组对边分别平行的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③两组对角分别相等的四边形是平行四边形;
④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询