解分式方程1/(x-2)+1/(x+6)=1/(x-1)+1/(x-7)
2个回答
展开全部
1/(x-2)+1/(x-6)=1/(x-1)+1/(x-7)
(2x-8)/(x-2)(x-6)=(2x-8)/(x-1)(x-7)
(2x-8)[1/(x-2)(x-6)-1/(x-1)(x-7)]=0
2(x-4)[(x-1)(x-7)-(x-2)(x-6)]/(x-2)(x-6)(x-1)(x-7)=0
2(x-4)[(x^2-8x+7)-(x^2-8x+12)]/(x-2)(x-6)(x-1)(x-7)=0
-5*2(x-4)/(x-2)(x-6)(x-1)(x-7)=0
x=4
(2x-8)/(x-2)(x-6)=(2x-8)/(x-1)(x-7)
(2x-8)[1/(x-2)(x-6)-1/(x-1)(x-7)]=0
2(x-4)[(x-1)(x-7)-(x-2)(x-6)]/(x-2)(x-6)(x-1)(x-7)=0
2(x-4)[(x^2-8x+7)-(x^2-8x+12)]/(x-2)(x-6)(x-1)(x-7)=0
-5*2(x-4)/(x-2)(x-6)(x-1)(x-7)=0
x=4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询