线性代数:A为n阶非0矩阵,为什么A^3=0,则A的特征值全是0?

有没有可能A的特征值中一部分为0?... 有没有可能A的特征值中一部分为0? 展开
 我来答
教育小百科达人
2021-09-20 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

具体回答如下:

根据题意,设a≠0为A的属于特征值λ的特征向量

则Aa=λa

那么A^3a=λ^3a=0,a≠0

所以λ=0

求特征值:

描述正方形矩阵的特征值的重要工具是特征多项式,λ是A的特征值等价于线性方程组(A – λI) v = 0 (其中I是单位矩阵)有非零解v (一个特征向量),因此等价于行列式|A – λI|=0 [1]  。

函数p(λ) = det(A – λI)是λ的多项式,因为行列式定义为一些乘积的和,这就是A的特征多项式。矩阵的特征值也就是其特征多项式的零点。

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友194598c
2021-08-11
知道答主
回答量:3
采纳率:0%
帮助的人:1248
展开全部
因为A^3=O 所以A^3是一个0矩阵,即所有元素都为0,所有的特征值也是0, A的特征值是A^3特征值的开三次方根。则A的所有特征值也是0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
perfetde
2013-10-30 · TA获得超过2215个赞
知道大有可为答主
回答量:1120
采纳率:100%
帮助的人:1494万
展开全部
设a≠0为A的属于特征值λ的特征向量 则Aa=λa
那么A^3a=λ^3a=0,a≠0,所以λ=0
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
我敬往事一杯
2021-10-17
知道答主
回答量:1
采纳率:0%
帮助的人:443
展开全部
A^3=0,意味着A^n=0(n≥3)
并且Aa=λa→A^na=λ^na
所以λ全为0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式