如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,E为AB1中点,AB
如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,E为AB1中点,AB=AA1=BB1=2CC1.(Ⅰ)求证;...
如图,在几何体ABC-A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,E为AB1中点,AB=AA1=BB1=2CC1.(Ⅰ)求证;CE∥平面A1B1C1,(Ⅱ)求证:平面AB1C1⊥平面A1BC.
展开
展开全部
证明:(Ⅰ)∵点A1,B1,C1在平面ABC内的正投影分别为A,B,C,
∴AA1∥BB1∥CC1,
取A1B1中点F,连接EF,FC,则EF∥
A1A,EF=
A1A
∵AA1=4,CC1=2,∴CC1∥
A1A,CC1=
A1A,
∴CC1∥EF,CC1=EF,
∴四边形EFC1C为平行四边形,
∴CE∥C1F,
∵CE?平面A1B1C1,C1F?平面A1B1C1,
∴CE∥平面A1B1C1;
(Ⅱ)∵BB1⊥平面ABC,∴BB1⊥BC,
∵AB⊥BC,
∵AB∩BB1=B,
∴BC⊥平面AA1BB1,
∵AB1?平面AA1BB1,
∴BC⊥AB1,
∵AA1=BB1=AB,AA1∥BB1,
∴四边形AA1BB1为正方形,
∴AB1⊥A1B,
∵A1B∩BC=B,
∴AB1⊥平面A1BC,
∴平面AB1C1⊥平面A1BC.
∴AA1∥BB1∥CC1,
取A1B1中点F,连接EF,FC,则EF∥
1 |
2 |
1 |
2 |
∵AA1=4,CC1=2,∴CC1∥
1 |
2 |
1 |
2 |
∴CC1∥EF,CC1=EF,
∴四边形EFC1C为平行四边形,
∴CE∥C1F,
∵CE?平面A1B1C1,C1F?平面A1B1C1,
∴CE∥平面A1B1C1;
(Ⅱ)∵BB1⊥平面ABC,∴BB1⊥BC,
∵AB⊥BC,
∵AB∩BB1=B,
∴BC⊥平面AA1BB1,
∵AB1?平面AA1BB1,
∴BC⊥AB1,
∵AA1=BB1=AB,AA1∥BB1,
∴四边形AA1BB1为正方形,
∴AB1⊥A1B,
∵A1B∩BC=B,
∴AB1⊥平面A1BC,
∴平面AB1C1⊥平面A1BC.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询